Réseaux Télécons

Consultez nos parutions sur dunod.com

Aide-mémoire de Réseaux et Télécoms Claude Servin 416 pages Dunod, 2012

Sécurité informatique et réseaux 3º édition Solange Ghernaouti-Hélie 368 pages Dunod, 2011

Réseaux Télécons Télécons

Claude Servin

Ancien responsable Réseaux et Télécoms au sein du ministère de la Défense et chargé de cours au Cnam de Paris

Préface de Jean-Pierre Arnaud Professeur au Cnam, titulaire de la chaire de Réseaux

4e édition

Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs.

Maquette de couverture : **Barbary & Courte**

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellec-tuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autorisation des ayants droit. Or, cette pratique

s'est généralisée dans les établissements

d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© Dunod, Paris, 2003, 2006, 2009, 2013 ISBN 978-2-10-059258-6

DANGER

TUE LE LIVRE

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Préface

Le domaine des Télécommunications et des Réseaux est en pleine effervescence, chaque semaine qui s'écoule apporte sa moisson de nouvelles offres, d'annonces et de propositions de norme. Confronté à ce flux incessant de nouveautés, le praticien doit faire des choix qui s'avéreront stratégiques pour l'entreprise et structurants pour l'avenir de son système d'information. C'est dire l'importance de disposer de bases solides, seules aptes à évaluer sainement la pertinence des solutions proposées par les constructeurs de matériels et les éditeurs de logiciels. Encore faut-il s'entendre sur la constitution de cette base : il ne s'agit pas d'amasser des connaissances plus ou moins vagues ou plus ou moins utiles, mais de construire un socle sur lequel pourra s'appuyer une réflexion personnelle.

Dans la conjoncture actuelle, il n'est guère de tâche plus utile que de transmettre ces connaissances et d'enseigner les méthodes qui permettent d'en tirer profit. L'évolution technologique imposait une nouvelle édition des ouvrages de Claude Servin. Pour distinguer ce qui, dans cette multitude d'évolutions, est suffisamment assuré pour mériter d'être enseigné, il fallait la pratique du terrain d'un homme de réseaux. Il fallait aussi allier à cette expérience de l'ingénieur qui crée des projets celle de l'enseignant qui transmet les savoirs nécessaires à cette création.

Claude Servin possède assurément l'une et l'autre et c'est ce qui donne à son ouvrage un intérêt tout particulier. Ses lecteurs apprécieront une présentation simple des concepts les plus fondamentaux, débarrassés de tout hermétisme et orientés vers l'action et l'ingénierie, sans céder aux modes passagères ou aux complexités inutiles qui encombrent bien des manuels.

Ce sont ces qualités qui lui ont permis de s'inscrire avec réussite dans les enseignements dispensés au Conservatoire national des Arts et Métiers (Cnam) et de jouer le rôle de pivot vers des enseignements plus spécialisés.

Déjà inséré dans le monde du travail, le public du Cnam est exigeant, il vient y chercher une mise en perspective et une rigueur sans faille. Il ne saurait se satisfaire de l'autorité d'un enseignant qui ne pourrait faire preuve de sa capacité à maîtriser les enjeux technologiques actuels. Claude Servin a su les convaincre et, comme les auditeurs qui se pressent nombreux à ses cours et y trouvent l'impulsion pour un approfondissement ultérieur, je suis certain que le lecteur trouvera à la lecture de cet ouvrage un intérêt soutenu et qu'il sera son compagnon pendant

VI Réseaux & télécoms

encore de longues années. Les manuels d'enseignement auxquels on continue de se référer une fois entré dans la vie active ne sont pas si nombreux : ayant personnellement l'expérience de la direction de sociétés dans le domaine des réseaux, je ne saurais faire à cet ouvrage un meilleur compliment que de dire qu'il fait partie de ceux-là.

Jean-Pierre ARNAUD Professeur au Conservatoire national des Arts et Métiers Titulaire de la chaire de Réseaux

Table des matières

PRÉI	FACE	V
AVA	NT-PROPOS	XIX
PAR	TIE I • CONCEPTS FONDAMENTAUX	1
СНА	PITRE 1 • L'INFORMATION ET SA REPRÉSENTATION	3
1.1	Généralités 1.1.1 Les flux d'information 1.1.2 Caractéristiques des réseaux de transmission	3 3 3
1.2	La représentation de l'information 1.2.1 Les différents types d'information 1.2.2 Le codage des informations 1.2.3 La numérisation des informations	5 5 6 11
1.3	La compression de données 1.3.1 Généralités 1.3.2 La quantification de la compression 1.3.3 La compression sans perte 1.3.4 Les codages à réduction de bande	20 20 21 21 22
1.4	Conclusion	34
СНА	PITRE 2 • LES SUPPORTS DE TRANSMISSION	37
2.1	Généralités	37
2.2	Caractéristiques des supports de transmission 2.2.1 La bande passante et le système de transmission 2.2.2 L'impédance caractéristique 2.2.3 Le coefficient de vélocité	38 38 41

VIII Réseaux & télécoms

2.3	Les supports guidés	44
	2.3.1 La paire torsadée	44
	2.3.2 Le câble coaxial	49
	2.3.3 La fibre optique	50
2.4	Les supports non guidés	55
	2.4.1 Principe des liaisons hertziennes	55
	2.4.2 Les faisceaux hertziens	60
	2.4.3 Les liaisons satellitaires	61
2.5	Conclusion	63
СНА	PITRE 3 • ÉLÉMENTS DE BASE DE LA TRANSMISSION DE DONNÉES	65
3.1	Introduction	65
3.2	L'organisation fonctionnelle et physique des échanges	66
	3.2.1 L'organisation des échanges	66
	3.2.2 L'organisation physique	66
3.3	Le mode d'adaptation au support	74
	3.3.1 Généralités	74
	3.3.2 La transmission en bande de base	75
	3.3.3 La transmission en large bande	86
	3.3.4 Les liaisons full duplex	92
	3.3.5 Les dispositifs complémentaires	93
	3.3.6 Exemples de modem3.3.7 Principaux avis du CCITT	96 98
	3.3.8 Comparaison transmission bande de base et large bande	100
3.4	La jonction DTE/DCE ou interface	100
3.4	3.4.1 Nécessité de définir une interface standard	100
	3.4.2 Les principales interfaces	101
3.5	Conclusion	110
СНΔ	PITRE 4 • NOTIONS DE PROTOCOLES	111
4.1	Généralités	111
4.2	Les types de liaisons et leur contrôle 4.2.1 La liaison point à point	112
	4.2.2 Les liaisons multipoints	112 112
4.2	·	
4.3	Les fonctions élémentaires 4.3.1 La délimitation des données	114 114
	4.3.2 Le contrôle d'intégrité	116
	4.3.3 Le contrôle de l'échange	125
	4.3.4 Le contrôle de flux	134
4.4	La signalisation	137
7.7	4.4.1 Définition	137
	4.4.2 La signalisation dans la bande	137
	4.4.3 La signalisation hors bande	138

Table des matières

4.5	Étude détaillée du protocole HDLC 4.5.1 Généralités 4.5.2 La structure de la trame HDLC 4.5.3 Fonctionnement détaillé d'HDLC 4.5.4 Les différentes versions du protocole HDLC 4.5.5 HDLC et les environnements multiprotocoles	139 139 140 142 146 147
4.6	Conclusion	148
CHA	PITRE 5 • MUTUALISATION DES RESSOURCES	149
5.1	Introduction	149
5.2	La quantification de trafic 5.2.1 Généralités 5.2.2 L'intensité de trafic et le taux d'activité	149 149 149
5.3	Les concentrateurs 5.3.1 Principe	153 153
5.4	Les multiplexeurs 5.4.1 Principe 5.4.2 Le multiplexage spatial 5.4.3 Le multiplexage temporel 5.4.4 Comparaison multiplexeur/concentrateur	154 154 154 157 162
5.5	Le multiplexage et l'accès à l'interface radio 5.5.1 Principe 5.5.2 Les techniques d'accès multiple	162 162 163
5.6	Le concept de réseau à commutation 5.6.1 Définitions 5.6.2 La classification des réseaux 5.6.3 La topologie physique des réseaux 5.6.4 Les réseaux à commutation	167 167 167 170 172
5.7	Conclusion	177
СНА	PITRE 6 • LES RÉSEAUX À COMMUTATION DE PAQUETS	179
6.1	Généralités	179
6.2	Les performances de la commutation de paquets	179
6.3	Du mode datagramme au mode connecté 6.3.1 Principe 6.3.2 Les modes de mise en relation	181 181 183
6.4	Les notions d'adressage 6.4.1 Définition 6.4.2 L'adressage physique	185 185 185
6.5	La notion de nommage 6.5.1 Le nommage 6.5.2 La notion d'annuaire	189 189 190
6.6	L'acheminement dans le réseau 6.6.1 Définitions 6.6.2 Les protocoles de routage	190 190 191

© Dunod - Toute reproduction non autorisée est un délit.

X Réseaux & télécoms

6.7	6.7.1	ation de la taille des unités de données La notion de MTU La segmentation et le réassemblage	204 204 204
6.8	6.8.1 6.8.2	gestion dans les réseaux Définition Les mécanismes de prévention de la congestion La résolution ou la guérison de la congestion	206 206 206 209
6.9	La voix 6.9.1 6.9.2		209 209 210
6.10	Conclu	ision	210
PAR	TIE II •	LES ARCHITECTURES PROTOCOLAIRES	213
CHA	PITRE 7	• LES ARCHITECTURES PROTOCOLAIRES	215
7.1	Introdu	uction	215
7.2	Conce 7.2.1 7.2.2		216 216 217
7.3	_	nisation du modèle de référence Concepts ayant conduit à la modélisation Description succincte du modèle de référence	220 220 222
7.4	Conclu	ision	226
CHAI	PITRE 8	• INTRODUCTION À TCP/IP	227
8.1	Généra 8.1.1 8.1.2 8.1.3 8.1.4	alités Origine Principe architectural	227 227 228 229 230 233
8.2	L'adres 8.2.1 8.2.2	sage dans le réseau logique Principe de l'adressage IPv4 Les techniques d'adressage dans un réseau IP	234 234 235
8.3	Le rout 8.3.1 8.3.2	tage dans le réseau IP L'adressage d'interface Le concept d'interface non numérotée	245 245 246
8.4	8.4.1 8.4.2 8.4.3 8.4.4 8.4.5	Migration IPv4 vers IPv6	246 246 247 248 248 255
8.5	Conclu	ision	261

Table des matières	XI

CHA	PITRE 9 • TCP/IP ET LE NIVEAU LIAISON	263
9.1	Généralités	263
9.2	Les protocoles de liaison (point à point)	263
	9.2.1 Généralités	263
	9.2.2 SLIP (Serial Line Internet Protocol, RFC 1055)	264
	9.2.3 PPP (Point to Point Protocol)	265
CHAI	PITRE 10 • TCP/IP ET LE NIVEAU RÉSEAU	277
10.1	Généralités	277
10.2	La structure du datagramme IP	277
10.3	Le contrôle de la fragmentation sous IP	281
10.4	D'IPv4 à IPv6	282
	10.4.1 Les lacunes d'IPv4	282
	10.4.2 Le datagramme IPv6	283
10.5	Les utilitaires de la couche réseau	287
	10.5.1 Le protocole ICMP 10.5.2 La résolution d'adresse	287 291
	10.5.3 Les utilitaires de configuration dans IPv4	294
	10.5.4 L'autoconfiguration dans IPv6	297
10.6	IP et la mobilité	299
	10.6.1 Généralités	299
	10.6.2 Le principe de la mobilité sous IPv4 10.6.3 La mobilité dans IPv6 (RFC 3775)	299 304
	10.6.4 Conclusion	305
10.7	L'encapsulation GRE	306
	Conclusion	307
CHA	PITRE 11 • TCP/IP ET LE NIVEAU TRANSPORT	309
11.1	Généralités	309
11.2	Les mécanismes de base de TCP	309
	11.2.1 La notion de connexion de transport	309
	11.2.2 Notion de multiplexage de connexion de transport 11.2.3 L'établissement de la connexion de transport	310 311
	11.2.4 Le mécanisme contrôle de l'échange	313
11.3	TCP et les mécanismes associés	317
	11.3.1 La structure du segment TCP	317
	11.3.2 Le contrôle d'erreur	318
	11.3.3 La « mémorisation » des données	319
11.4	Le contrôle de flux et de congestion 11.4.1 Définitions	320
	11.4.2 Le contrôle de flux	320 321
	11.4.3 Le contrôle de la congestion	322

XII Réseaux & télécoms

11.5	Les options de TCP	327
	11.5.1 La taille des segments	327
	11.5.2 L'option d'estampille horaire 11.5.3 Le TCP et les réseaux à haut débit	328 329
11 6	Le mode datagramme (UDP)	330
11.0	11.6.1 UDP dans IPv4	330
	11.6.2 UDP dans IPv6	330
	11.6.3 UDP-Lite (RFC 3828)	331
11.7	Conclusion	331
CHAF	PITRE 12 • TCP/IP ET LES APPLICATIONS	333
12.1	Introduction	333
12.2	Notions d'annuaire	333
	12.2.1 Généralités	333
	12.2.2 Le service de noms (DNS)	333
	12.2.3 La généralisation de la notion d'annuaire	342
12.3	Le transfert de fichiers	345
	12.3.1 TFTP (Trivial File Transfer Protocol, RFC 1350)	346
	12.3.2 FTP (File Transfert Protocol, RFC 959)	347
12.4	L'émulation de terminal (Telnet)	349
	12.4.1 Principe de Telnet 12.4.2 Les commandes et les modes de fonctionnement	349 349
42.5		
12.5	Les notions de middleware 12.5.1 Définitions	351 351
	12.5.2 Les exemples d'outils <i>milddleware</i> dans TCP/IP	352
	12.5.3 Internet et le <i>middleware</i>	354
12 6	La messagerie électronique	356
	12.6.1 Introduction	356
	12.6.2 Architecture du système de messagerie	357
	12.6.3 La diffusion des messages	358
	12.6.4 Les protocoles de messagerie	358
12.7	Conclusion	358
PAR	TIE III • MISE EN ŒUVRE	359
CHAF	PITRE 13 • INTRODUCTION AUX RÉSEAUX DE TRANSPORT	363
13.1	Généralités	363
13.2	Le plan de transmission	364
	13.2.1 Généralités	364
	13.2.2 La synchronisation des réseaux	365
	13.2.3 La hiérarchie plésiochrone (PDH)	369
	13.2.4 La hiérarchie synchrone (SDH)	371
	13.2.5 La transmission optique	374

Tabi	le des matières	XIII
13.3	Le plan de service 13.3.1 Généralités 13.3.2 Introduction aux protocoles réseaux 13.3.3 Les réseaux d'opérateurs	375 375 376 381
13.4	L'accès aux réseaux, la boucle locale 13.4.1 Définition 13.4.2 Organisation de la distribution des accès 13.4.3 L'accès aux réseaux par liaison dédiée (ligne spécialisée) 13.4.4 La Boucle locale radio (BLR) 13.4.5 Les accès haut débit 13.4.6 Les courants porteurs 13.4.7 Les accès Ethernet	383 383 384 388 389 396 397
13.5	Conclusion	398
CHAF	PITRE 14 • LES PROTOCOLES DE CŒUR DE RÉSEAU	399
14.1	Le protocole X.25 14.1.1 Généralités 14.1.2 Le niveau X.25-1 14.1.3 Le niveau X.25-2 14.1.4 Le niveau X.25-3	399 399 400 400 400
14.2	Le relais de trames ou Frame relay 14.2.1 Généralités 14.2.2 Le format de l'unité de données 14.2.3 Les mécanismes élémentaires	406 406 407 408
14.3	L'ATM (Asynchronous Transfer Mode) 14.3.1 Généralités 14.3.2 La taille des unités de données ou cellules 14.3.3 Les mécanismes de base et le format de la cellule ATM 14.3.4 Les différentes couches du modèle 14.3.5 La qualité de service dans l'ATM 14.3.6 Le contrôle de flux et de congestion	416 416 417 418 421 425 427
14.4	Conclusion	428
CHAF	PITRE 15 • MPLS, MULTIPROTOCOL LABEL SWITCHING	431
15.1	Généralités	431
15.2	Du routage IP à la commutation IP	431
15.3	Le réseau MPLS 15.3.1 Le commutateur MPLS 15.3.2 Le principe de base d'un réseau MPLS 15.3.3 Les mécanismes particuliers	432 432 433 434
15.4	MPLS et les infrastructures existantes 15.4.1 Généralités 15.4.2 La gestion du TTL 15.4.3 MPLS et ATM	436 436 437 438

XIV Réseaux & télécoms

15.5	La construction des routes dans un réseau MPLS 15.5.1 Généralités 15.5.2 Le protocole LDP (RFC 3036)	439 439 440
15 6	MPLS et ingénierie de trafic (MPLS-TE)	442
	Les VPN MPLS 15.7.1 Notions de base sur les VPN 15.7.2 Principe général des VPN MPLS 15.7.3 Topologie des VPN	443 443 444 447
15.8	G-MPLS (RFC 3945)	448
15.9	MPLS et IPv6 (6PE)	449
15.10	Conclusion	449
СНАР	ITRE 16 • LES RÉSEAUX LOCAUX ET MÉTROPOLITAINS	451
16.1	Introduction 16.1.1 Définition 16.1.2 Distinction entre réseau local et informatique traditionnelle 16.1.3 Principe général du partage de ressource 16.1.4 Les constituants d'un réseau local 16.1.5 Les réseaux locaux et la normalisation	451 451 451 453 454 456
16.2	Étude succincte des différentes couches 16.2.1 La couche physique 16.2.2 La sous-couche MAC 16.2.3 La couche liaison (LLC)	457 457 463 468
16.3	Aperçu des principales implémentations 16.3.1 L'anneau à jeton, IEEE 802.5 16.3.2 Le jeton adressé ou Token Bus, IEEE 802.4 16.3.3 Le réseau 100 VG AnyLAN, 802.12	472 472 473 474
	Les réseaux métropolitains 16.4.1 Généralités 16.4.2 FDDI (Fiber Distributed Data Interface) 16.4.3 DQDB (Distributed Queue Dual Bus) 16.4.4 Ethernet métropolitain Conclusion	476 476 476 477 478 480
10.5	Conclusion	400
	ITRE 17 • LES LAN « ETHERNET PARTAGÉ »	483
	Introduction	483
17.2	Les caractéristiques générales des réseaux Ethernet/802.3 17.2.1 Le principe du CSMA/CD 17.2.2 La fenêtre de collision 17.2.3 L'algorithme du BEB 17.2.4 Le silence inter-message (IFG, InterFrame Gap) 17.2.5 Description des tramps Ethernet/IEEE 802.3	483 483 484 486 487
	17.2.5 Description des trames Ethernet/IEEE 802.3 17.2.6 Les erreurs	487 487

Table des matières	XV
17.3 Les différentes versions d'Ethernet 17.3.1 Présentation 17.3.2 L'Ethernet épais, IEEE 802.3 10Base5 17.3.3 L'Ethernet fin, IEEE 802.3 10Base2 17.3.4 L'Ethernet sur paires torsadées, IEEE 802.3 10BaseT 17.3.5 L'Ethernet à 100 Mbit/s 17.3.6 Le Gigabit Ethernet 17.3.7 Le 10 Gigabit Ethernet	488 488 490 490 491 493 495 500
17.4 Conclusion	502
CHAPITRE 18 • ETHERNET COMMUTÉ ET LES VLAN	503
18.1 Ethernet commuté 18.1.1 Introduction 18.1.2 Principe de l'acheminement dans les commutateurs 18.1.3 Notion d'architecture des commutateurs 18.1.4 Contrôle de flux dans les commutateurs 18.1.5 Commutation et trafic multicast 18.1.6 Le STP (Spanning Tree Protocol) ou arbre recouvrant	503 503 505 508 509 510 512
18.2 Les réseaux virtuels ou VLAN (<i>Virtual Local Area Network</i>) 18.2.1 Principes généraux des VLAN 18.2.2 Les différents niveaux de VLAN 18.2.3 L'identification des VLAN (802.1Q) 18.2.4 Les VLAN dans les réseaux d'opérateurs	516 516 518 519 524
18.3 Conclusion	527
CHAPITRE 19 • LES RÉSEAUX SANS FIL	529
 19.1 Introduction 19.1.1 Généralités 19.1.2 La problématique de l'accès aux réseaux sans fil 19.1.3 L'architecture générale des réseaux sans fil 19.1.4 Les réseaux 802.11 	529 529 529 532 534
19.2 Les réseaux IEEE 802.15-1 (Bluetooth)	550
19.3 Conclusion	554
CHAPITRE 20 • INTERCONNEXION DES RÉSEAUX	555
 20.1 généralités 20.1.1 Définition 20.1.2 Notions de conversion de service et de protocole 20.1.3 L'encapsulation ou tunneling 	555 555 555 556
20.2 Les éléments d'interconnexion (relais) 20.2.1 Définitions 20.2.2 Les répéteurs 20.2.3 Les ponts	560 560 560 562

565

20.2.4 Les routeurs

XVI Réseaux & télécoms

20.3	Les techniques de routage 20.3.1 Généralités 20.3.2 Le routage vecteur-distance, RIP 20.3.3 Le routage à état des liens (OSPF) 20.3.4 Le routage inter-domaine	569 569 570 573 583
20.4	Le multicast et le routage multicast 20.4.1 Introduction au multicast 20.4.2 Rappel sur l'adressage multicast 20.4.3 Le multicast dans IPv4 20.4.4 Multicast IPv6 20.4.5 Internet et le multicast	584 584 585 587 589 590
20.5	Les passerelles applicatives	591
CHAF	PITRE 21 • NOTIONS DE QUALITÉ DE SERVICE	593
21.1	Notions de qualité de service 21.1.1 Généralités	593 593
21.2	Mise en œuvre de la QoS 21.2.1 Integrated Services 21.2.2 Differentiated Services 21.2.3 La QoS dans MPLS 21.2.4 InterServ/RSVP et DiffServ, lequel choisir ?	594 594 595 598 598
21.3	Notion de gestion des files d'attente dans les routeurs	598
21.4	Mise en œuvre dans les réseaux d'opérateur	601
21.5	Conclusion	602
CHAF	PITRE 22 • INTRODUCTION À LA TÉLÉPHONIE	605
22.1	Principes de base 22.1.1 Le réseau téléphonique 22.1.2 Principe d'un poste téléphonique 22.1.3 Principe du raccordement d'usager 22.1.4 La mise en relation usager/usager 22.1.5 La numérotation 22.1.6 La signalisation	605 605 606 607 607 608 610
22.2	L'évolution de la téléphonie, le RNIS 22.2.1 De l'accès analogique à l'accès numérique 22.2.2 L'accès au réseau 22.2.3 La signalisation et le réseau RNIS 22.2.4 L'évolution du RNIS	611 611 613 613
22.3	Les autocommutateurs privés 22.3.1 Généralités 22.3.2 Architecture d'un PABX 22.3.3 Les services et applications vocales	614 614 614 615
22.4	L'installation d'abonné 22.4.1 Généralités 22.4.2 Définition de l'accès au réseau	619 619 620

677

24.2.2 Les différents modèles

XVIII Réseaux & télécoms

24.3	L'administration dans l'environnement TCP/IP 24.3.1 Principes généraux 24.3.2 Les MIB 24.3.3 Le protocole SNMP	680 680 681 683
24.4	SNMP et ISO	685
24.5	Les plates-formes d'administration 24.5.1 Les outils d'administration des couches basses 24.5.2 Les hyperviseurs 24.5.3 Les systèmes intégrés au système d'exploitation	685 685 686
24.6	Conclusion	686
CHAF	PITRE 25 • LA SÉCURITÉ DES SYSTÈMES D'INFORMATION	687
	Généralités	687
25.2	La protection des données 25.2.1 Notions de cryptographie	688 688
25.3	La sécurisation des échanges 25.3.1 L'usurpation d'identité 25.3.2 Exemple d'infrastructure de sécurité, la PKI 25.3.3 La sécurité et le protocole de transmission	694 694 694
25.4	La protection du réseau 25.4.1 Les menaces 25.4.2 La protection de l'intranet 25.4.3 La protection des accès, les VPN	700 700 701 709
25.5	Exemple : sécurisation d'un système de ToIP 25.5.1 Les pertes de service 25.5.2 Protection du système	712 712 713
25.6	Conclusion	716
ANN	IEXES	717
A.	Normalisation	718
В.	Abaques d'Erlang	720
C.	Liste des abréviations et sigles utilisés	722
INDF	=x	731

Avant-propos

Aujourd'hui avec Internet et le concept de mobilité, l'accès à l'information est permanent, une ère nouvelle est née : celle de la communication. Cette révolution n'a été rendue possible que par une formidable évolution des technologies, des progrès réalisés dans le traitement du signal, dans le transport des données et surtout par multiplication des moyens d'accès. Cette mutation incessante du monde des télécommunications nécessite de la part de tous les acteurs du domaine de solides notions de base pour la comprendre, s'y adapter et non la subir.

C'est l'objectif de cet ouvrage que d'apporter à l'ingénieur, au technicien et à l'étudiant toutes les bases nécessaires à la maîtrise de ce vaste domaine que sont aujourd'hui les réseaux. Ainsi, à partir de l'information et de sa représentation en machine, *Réseaux et Télécoms* apporte à tous les connaissances indispensables à la compréhension, à la conception, à la mise en œuvre et la maintenance des réseaux.

Au seuil d'une nouvelle édition de nombreuses questions se posent : quelles sont les technologies devenues obsolètes, quelles sont celles qui vont demain dominer ? L'étude d'X.25, du Frame Relay... de toutes ces techniques vieillissantes doit-elle être abandonnée ? Le modèle ISO est-il encore d'actualité ? Même si ces différentes techniques sont obsolètes les principes sur lesquels elles reposent ont fondé les solutions actuelles qui en dérivent et déterminent celles à venir¹.

Intégralement revue, cette édition intègre les nouvelles technologies qui émergentes hier sont aujourd'hui réalité, c'est ainsi que les techniques de migration vers IPv6 font l'objet d'importants développements. Plus que par le passé, cette édition constitue une base de savoirs indispensables aux techniciens réseau et aux étudiants.

Conservant le même plan que les éditions précédentes, la première partie est consacrée à l'étude des **concepts fondamentaux** : la représentation des données, les techniques de base de la transmission de données avec le développement des techniques radios et la mutualisation des ressources qui trouve sa concrétisation dans le concept de réseau sont étudiées en détail.

La deuxième partie formalise ces concepts en décrivant le **principe des architectures proto- colaires** de réseaux. Après un bref aperçu du modèle OSI, l'étude de TCP/IP, de son évolution et d'IPv6 y tiennent une place importante.

^{1. «} Quand vous délibérez, prenez dans le passé des exemples pour l'avenir : ce qui est déjà connu vous fera juger de ce que vous ne connaissez pas encore » Isocrate, Discours de la morale, IV^e siècle avant Jésus Christ.

XX Réseaux & télécoms

La troisième partie est consacrée à la mise en œuvre des techniques étudiées précédemment dans la réalisation de réseaux de transport d'information (réseaux longue distance) et de la diffusion de celle-ci (réseaux locaux). L'étude des protocoles X.25, Frame Relay a été maintenue mais réduite, une large place a été octroyée à MPLS et au concept de VPN. Les réseaux locaux avec ou sans fil, la commutation et les réseaux virtuels (VLAN) avec évidemment la migration des techniques Ethernet dans les réseaux métropolitains sont étudiés en détail. Enfin, les notions d'interconnexion et de qualité de service concluent cette partie.

La quatrième partie est dédiée à l'étude des réseaux voix et à celle de la convergence de la voix, de la donnée et des images qui trouve sa concrétisation dans la téléphonie sur IP.

Enfin, la cinquième partie conclut cet ouvrage par l'étude de l'**administration** des réseaux, de la **sécurité** des réseaux.

Partie I

Concepts fondamentaux

	LIIII	ormation et sa representation	
	1.1	Généralités	3
	1.2	La représentation de l'information	5
	1.3	La compression de données	20
	1.4	Conclusion	
2	Les	supports de transmission	37
	2.1	Généralités	37
	2.2	Caractéristiques des supports de transmission	38
	2.3	Les supports guidés	44
	2.4	Les supports non guidés	
	2.5	Conclusion	
3	Élén	nents de base de la transmission de données	65
	3.1	Introduction	
	3.2	L'organisation fonctionnelle et physique des échanges	
	3.3	Le mode d'adaptation au support	
	3.4	La jonction DTE/DCE ou interface	
	3.5	Conclusion	
4	Not	ions de protocoles	111
	4.1	Généralités	
	4.2	Les types de liaisons et leur contrôle	112
	4.3	Les fonctions élémentaires	
	4.4	La signalisation	
	4.5	Étude détaillée du protocole HDLC	

	4.6	Conclusion	148
5	Mut	ualisation des ressources	149
	5.1	Introduction	149
	5.2	La quantification de trafic	
	5.3	Les concentrateurs	
	5.4	Les multiplexeurs	154
	5.5	Le multiplexage et l'accès à l'interface radio	162
	5.6	Le concept de réseau à commutation	
	5.7	Conclusion	177
6	Les i	réseaux à commutation de paquets	179
	6.1	Généralités	
	6.2	Les performances de la commutation de paquets	179
	6.3	Du mode datagramme au mode connecté	
	6.4	Les notions d'adressage	
	6.5	La notion de nommage	
	6.6	L'acheminement dans le réseau	
	6.7	Adaptation de la taille des unités de données	
	6.8	La congestion dans les réseaux	
	6.9	La voix dans les réseaux en mode paquet	
	6.10	Conclusion	

L'information et sa représentation

1.1 GÉNÉRALITÉS

1.1.1 Les flux d'information

L'évolution des besoins et des applications informatiques conduit à l'acheminement, dans un même réseau des données informatiques traditionnelles (comme le texte), de la voix et de la vidéo. Transporter sur un même réseau des flux d'information de natures différentes nécessite que chacun d'eux ait une représentation physique identique et que le système de transmission ait la capacité de prendre en compte les contraintes spécifiques à chaque type de flux (figure 1.1).

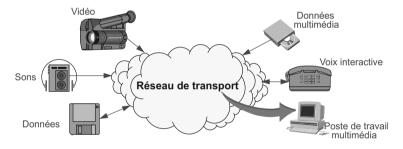


Figure 1.1 Réseau et différents flux d'information.

Afin de qualifier ces différents flux vis-à-vis du système de transmission, nous définirons succinctement les caractéristiques essentielles d'un réseau de transmission¹. Ensuite, nous examinerons le mode de représentation de ces informations. Enfin, nous appliquerons les résultats aux données, à la voix et à l'image pour en déduire les contraintes de transfert spécifiques à chaque type de flux.

1.1.2 Caractéristiques des réseaux de transmission

Notion de débit binaire

Les systèmes de traitement de l'information emploient une logique à deux états dite « binaire ». Pour y être traitée, l'information doit être traduite en symboles compréhensibles et manipulables par ces systèmes. Selon le type d'information à transformer, l'opération qui consiste à transformer les données en éléments binaires s'appelle le **codage** ou la **numérisation**.

^{1.} Ces différentes notions seront revues et approfondies dans la suite de cet ouvrage.

On appelle débit binaire (*D*) le nombre d'éléments binaires, ou nombre de bits, émis sur le support de transmission pendant une unité de temps. Le débit binaire est généralement la grandeur utilisée en premier pour qualifier un système de transmission; il s'exprime par la relation:

$$D=\frac{V}{t}$$

avec *D* (débit) en bits² par seconde (bit/s), *V* volume à transmettre exprimé en bits, *t* durée de la transmission en secondes.

Le débit binaire mesure le nombre d'éléments binaires transitant sur le canal de transmission pendant l'unité de temps (figure 1.2).

Figure 1.2 Schématisation d'un système de transmission.

Notion de rapport signal sur bruit

Durant la transmission, les signaux électriques peuvent être perturbés par des phénomènes électriques ou électromagnétiques d'origine externe désignés sous le terme générique de **bruit**. Le bruit est un phénomène qui dénature le signal et qui est susceptible d'introduire des erreurs d'interprétation du signal reçu (figure 1.3).

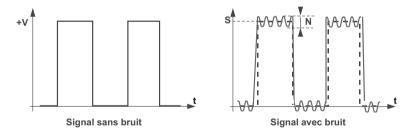


Figure 1.3 Signal pollué par le bruit.

Les capacités de transport d'information (débit) sont directement liées au rapport entre la puissance du signal utile et celle du signal de bruit. Ce rapport, appelé rapport signal sur bruit (SNR, Signal Noise Ratio que nous noterons S/N), s'exprime en décibels (dB^3), formule dans laquelle S représente la puissance électrique du signal transmis et N la puissance du signal parasite ou bruit affectant le canal de transmission :

$$S/N_{dB} = 10 \log_{10} (S/N)_{(en puissance)}$$

^{2.} L'unité officielle de débit est le bit/s (invariable). L'abréviation bps pouvant être confondue avec byte par seconde ne sera pas utilisée dans cet ouvrage. Rappelons que le terme bit provient de la contraction des termes « binary digit ».

^{3.} Le décibel ou dB ($10^{\rm e}$ du Bel) est une unité logarithmique sans dimension. Elle exprime le rapport entre deux grandeurs de même nature. Le rapport signal/bruit peut aussi s'exprimer par le rapport des tensions, la valeur est alors $S/N_{\rm dB} = 20 \log_{10} (S/N)_{\rm (en tension)}$.

Les phénomènes parasites (bruit) perturbent le canal de transmission et peuvent affecter les informations en modifiant un ou plusieurs bits du message transmis, introduisant ainsi des erreurs dans ce dernier (figure 1.4).

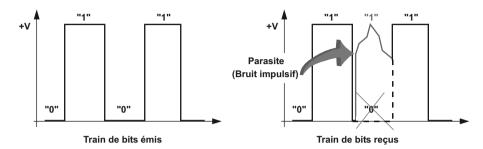


Figure 1.4 Effet d'une erreur sur le train binaire.

On appelle **taux d'erreur binaire** (*Te* ou **BER**, *Bit Error Rate*) le rapport du nombre de bits reçus en erreur au nombre de bits total transmis.

$$Te = \frac{\text{Nombre de bits en erreur}}{\text{Nombre de bits transmis}}$$

Notion de temps de transfert

Le temps de transfert, appelé aussi temps de transit ou temps de latence, mesure le temps entre l'émission d'un bit, à l'entrée du réseau et sa réception en sortie de ce dernier. Ce temps prend en compte le temps de propagation sur le ou les supports et les différents temps de traitement dans les éléments actifs du réseau (nœuds).

Dans un réseau, le temps de transfert n'est pas une constante, il varie en fonction de la charge du réseau. Cette variation est appelée gigue ou *jitter*. Le temps de transfert conditionne le bon fonctionnement des applications interactives, sa variation conditionne la restitution correcte des flux vidéo et voix.

Notion de spectre du signal

Le mathématicien français Joseph Fourier (1768-1830) a montré que tout signal périodique de forme quelconque peut être décomposé en une somme de signaux élémentaires sinusoïdaux (fondamentale et harmoniques) superposés à une valeur moyenne (composante continue) éventuellement nulle. L'ensemble de ces composantes constitue le spectre du signal ce qui correspond à la bande de fréquences occupée par le signal (largeur de bande).

1.2 LA REPRÉSENTATION DE L'INFORMATION

1.2.1 Les différents types d'information

Les informations peuvent être réparties en deux grandes catégories selon ce qu'elles représentent et les transformations qu'elles subissent pour être traitées dans les systèmes informatiques. On distingue :

© Dunod - Toute reproduction non autorisée est un délit.

- ☐ Les données discrètes, l'information correspond à l'assemblage d'une suite d'éléments indépendants les uns des autres (suite discontinue de valeurs) et dénombrables (ensemble fini). Par exemple, un texte est une association de mots eux-mêmes composés de lettres (symboles élémentaires).
- □ Les données continues ou analogiques (figure 1.5) résultent de la variation continue d'un phénomène physique : température, voix... Un capteur fournit une tension électrique qui varie de manière analogue à l'amplitude du phénomène physique à analyser : signal analogique. Dans un intervalle déterminé (bornes) aussi petit soit-il, le signal analogique peut toujours prendre une infinité de valeurs. Par exemple pour passer 10 °C à 11 °C, la température prend, entre ces deux valeurs, une infinité de valeurs sans aucune discontinuité entre elles (fonction continue).

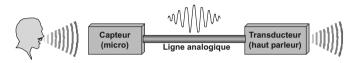


Figure 1.5 Signal analogique.

Pour être traitées par des équipements informatiques, ces informations doivent être représentées par une valeur binaire (**codage à la source**). Le codage à la source est plus spécifiquement appelé codage de l'information pour les informations discrètes et numérisation de l'information pour les informations analogiques.

1.2.2 Le codage des informations

Définition

Coder l'information consiste à faire correspondre (bijection) à chaque symbole d'un alphabet (élément à coder) une représentation binaire (mot code). L'ensemble des mots codes constitue le code (figure 1.6). Ces informations peuvent représenter un ensemble de commandes d'une machine-outil, des caractères alphanumériques... Seuls seront traités ici les codages alphanumériques utilisés dans les systèmes de traitement de données. Ces codes peuvent contenir :

- Des chiffres de la numérotation usuelle	[09];
- Des lettres de l'alphabet	[az, AZ] ;
- Des symboles nationaux	[é, è,] ;
- Des symboles de ponctuation	[,;:.?!];
- Des symboles semi-graphiques	[■
- Des commandes nécessaires au système	ſsaut de ligne, saut de page, e

Les différents types de code

Le codage des différents états d'un système peut s'envisager selon deux approches. La première, la plus simple, considère que chacun des états du système est équiprobable. La seconde prend en compte la fréquence d'apparition d'un état. Ceci nous conduit à définir deux types de code : les codes de longueur fixe et ceux de longueur variable.

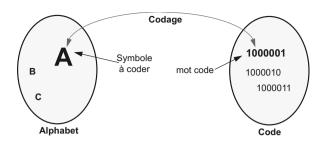


Figure 1.6 Principe du codage des données.

➤ Les codes de longueur fixe

Notion de quantité d'informations

Chaque état du système est codé par un certain nombre de bits (n), appelé longueur du code, longueur du mot code ou encore code à n moments. Ainsi,

- avec 1 bit, on peut coder 2 états (0,1)

- avec 2 bits, on peut coder 4 états (00, 01, 10, 11)

- avec 3 bits, on peut coder 8 états (000, 001, 010, 011, 100, 101, 110, 111)

D'une manière générale :

avec n bits, on peut coder 2^n états

Le nombre d'états pouvant être codés par un code de n bits s'appelle puissance lexicographique du code que l'on note :

$$P = 2^{n}$$

En généralisant, le nombre de bits nécessaires pour coder P états est n, tel que :

$$2^{(n-1)} < P \leqslant 2^n$$

En se rappelant que le logarithme d'un nombre N est le nombre par lequel il faut élever la base pour retrouver ce nombre $(N = base^{log N})$, par exemple, le logarithme de 8 à base 2 est 3 car $2^3 = 8$; on peut alors écrire :

$$P = 2^n$$
 soit $n = \log_2(P)$

Dans cette formule, le nombre de bits (n) représente la quantité d'information (Q) d'un mot du code. Lorsque dans un système, tous les états sont équiprobables ou considérés comme tel, la quantité d'information apportée par la connaissance d'un état est la même quel que soit l'état connu ; le codage qui en résulte est alors dit à longueur fixe.

L'information élémentaire est représentée par deux valeurs équiprobables (0 ou 1, pile ou face...), la quantité d'information apportée par la connaissance de l'un des états est :

$$Q = \log_2(2) = 1$$
 shannon ou 1 bit.

La quantité d'information Q s'exprime en shannons⁴ ou plus simplement en bits. Le bit est la quantité d'information qui correspond au lever de doute entre deux symboles équiprobables.

^{4.} Les premiers travaux sur la théorie de l'information sont dus à Nyquist (1924). La théorie de l'information fut développée par Shannon en 1949. Les principes établis à cette époque régissent toujours les systèmes de transmission de l'information.

Lorsque tous les états ne sont pas équiprobables, la quantité d'information est d'autant plus grande que la probabilité de réalisation de l'état est faible. Si p est la probabilité de réalisation de l'état P, la quantité d'information apportée par la connaissance de P est :

$$Q = \log_2(1/p)$$

Application

En supposant équiprobable l'apparition de chaque lettre, combien de bits sont nécessaires pour coder toutes les lettres de l'alphabet et quelle est la quantité d'information contenue dans la représentation codée d'une lettre ?

Le nombre de bits nécessaires, pour coder P valeurs, est donné par la relation :

$$2^{(n-1)} \triangleleft P \leqslant 2^n$$
 si $P = 26$ on a $2^4 \triangleleft 26 \leqslant 2^5$

soit un code d'une longueur 5 bits pour coder les 26 éléments. La quantité d'information contenue dans un mot code est de 5 bits.

Cependant, la quantité d'information apportée par la connaissance d'un caractère n'est que de :

$$Q = \log_2(1/p)$$

où p représente la probabilité d'apparition d'un symbole. Ici p = 1/26

$$Q = log_2(26) = 3,32 log_{10}(26) = 3,32 \times 1,4149 = 4,69 shannons ou bits$$

Les principaux codes de longueur fixe

Les codes usuels utilisent cinq éléments (code Baudot), sept éléments (code ASCII appelé aussi CCITT n° 5 ou encore IA5) ou huit éléments (EBCDIC).

Le code Baudot, code télégraphique à cinq moments ou alphabet international n° 2 ou encore CCITT n° 2, était utilisé dans le réseau télex. Le code Baudot autorise 2⁵ soit 32 caractères, ce qui est insuffisant pour représenter toutes les lettres de l'alphabet (26), les chiffres (10) et les commandes (Fin de ligne...). Deux caractères particuliers permettent la sélection de deux pages de codes soit au total une potentialité de représentation de 60 caractères.

Le code **ASCII** (figure 1.7), *American Standard Code for Information Interchange*, dont la première version date de 1963, est le code générique des télécommunications. Code à sept moments, il autorise 128 caractères (2⁷). Les 32 premiers symboles correspondent à des commandes utilisées dans certains protocoles de transmission pour en contrôler l'exécution. La norme de base prévoit des adaptations aux particularités nationales (adaptation à la langue). Ce code, étendu à huit moments, constitue l'alphabet de base des micro-ordinateurs de type PC.

Le code **EBCDIC**, *Extended Binary Coded Decimal Interchange Code*, est un code à huit moments, d'origine IBM, il est utilisé dans les ordinateurs du constructeur, il a aussi été adopté par d'autres constructeurs pour leurs calculateurs.

					b ₇	0	0	0	0	1	1	1	1
		ВГ	TS		b ₆	0	0	1	1	0	0	1	1
					b ₅	0	1	0	1	0	1	0	1
Caractères nationaux ———	b ₄	b ₃	b ₂	b ₁		0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	•	à	Р		р
Jeu de commandes —	0	0	0	1	1	SOH	DC1	!	1	Α	Q	а	q
	0	þ	1/	0	2	STX	DC2	"	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	£	3	С	S	С	s
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
	0	1	1	0	6	ACK	SYN	'	6	F	V	f	V
	0	1	1	1	7	BEL	ETB	(7	G	W	g	w
	1	0	0	0	8	BS	CAN)	8	Н	Х	h	х
	1	0	0	1	9	HT	EM		9	- 1	Υ	i	У
	1	0	1	0	Α	LF	SUB		:	J	Z	j	z
	1	0	1	1	В	VT	ESC	,	;	K		k	é
	1	1	0	0	С	FF	ES		<	L	ç	- 1	ù
	1	1	0	1	D	CR	GS			М	§	m	è
	1	1	1	0	Ε	SO	RS		>	N	٨	n	
	1	1	1	1	F	SI	US	/	?	0	_	0	DEL

Symbole	Sig	nification	Symbole	Signi	Signification			
ACK	ACK Acknowledge Accusé de		FS	File Separator	Séparateur de fichiers			
BEL	Bell	Sonnerie	GS	Group Separator	Séparateur de groupes			
BS	Backspace	Retour arrière	нт	Horizontal Tabulation	Tabulation horizontale			
CAN	Cancel	Annulation	LF	Line Feed	Interligne			
CR	Carriage Return	Retour chariot	NAK	Negative Acknowledge	Accusé de réception négatif			
DC	Device control	Commande d'appareil auxiliaire	NUL	Null	Nul			
DEL	Delete	Oblitération	RS	Record Separator	Séparateur d'articles			
DLE	Data Link Escape	Caractère d'échappement	SI	Shift IN	En code			
EM	End Medium	Fin de support	so	Shift Out	Hors code			
ENQ	Enquiry	Demande	SOH	Start Of Heading	Début d'en-tête			
ЕОТ	End Of Transmission	Fin de communication	SP	Space	Espace			
ESC	Escape	Échappement	STX	Start Of Text	Début du texte			
ЕТВ	End of Transmission Block	Fin de bloc de transmission	SYN	Synchronous idle	Synchronisation			
ETX	End Of Text	Fin de texte	тс	Transmission Control	Commande de transmission			
FE	Format Effector	Commande de mise en page	US	Unit Separator	Séparateur de sous-article			
FF	Form Feed	Présentation de formule	VT	Vertical Tabulation	Tabulation verticale			

Figure 1.7 Code ASCII.

➤ Les codes de longueur variable

H = 2.09 bits

Lorsque les états du système ne sont pas équiprobables, la quantité d'information apportée par la connaissance d'un état est d'autant plus grande que cet état a une faible probabilité de se réaliser. La quantité moyenne d'information apportée par la connaissance d'un état, appelée **entropie**, est donnée par la relation :

$$H = \sum_{i=1}^{i=n} p_i \log_2 \left(\frac{1}{p_i}\right)$$

où p_i représente la probabilité d'apparition du symbole de rang i.

L'entropie représente la longueur optimale du code des symboles du système. Déterminons la longueur optimale du code (entropie) pour le système décrit par le tableau suivant. À des fins de simplicité, chaque état est identifié par une lettre.

État	Probabilité
E	0,48
А	0,21
S	0,12
Т	0,08
U	0,06
Y	0,05

$$\begin{split} H &= -\left[0,48\log_2(0,48) + 0,21\log_2(0,21) + 0,12\log_2(0,12) + 0,08\log_2(0,08) \right. \\ &+ 0,06\log_2(0,06) + 0,05\log_2(0,05) \right] \\ H &= -3,32\left[0,48\log_{10}(0,48) + 0,21\log_{10}(0,21) + 0,12\log_{10}(0,12) \right. \\ &+ 0,08\log_{10}(0,08) + 0,06\log_{10}(0,06) + 0,05\log_{10}(0,05) \right] \end{split}$$

Le codage optimal devrait conduire à construire un code dont la longueur moyenne serait de 2,09 bits, alors que l'utilisation d'un code à longueur fixe nécessite 3 bits pour coder les six états de ce système ($2^2 < 6 \le 2^3$).

Il n'existe pas de code qui permette d'atteindre cette limite théorique. Cependant, Huffman a introduit en 1952 une méthode de codage (codage d'entropie) qui prend en compte la fréquence d'occurrence des états et qui se rapproche de cette limite théorique.

La construction du code de Huffman de cet exemple comporte sept étapes (figure 1.8) :

- 1. Dénombrer les différents états du système et créer la table des symboles.
- 2. Classer ces symboles par ordre des fréquences décroissantes (occurrence).
- Réaliser des réductions successives en rassemblant les deux occurrences de plus petite fréquence en une nouvelle occurrence.
- 4. Insérer la nouvelle occurrence obtenue dans la table et trier celle-ci à nouveau par ordre décroissant.
- 5. Poursuiver les réductions jusqu'à ce qu'il n'y ait plus d'élément (répétition des étapes 3, 4, 5).
- 6. Construiser l'arbre binaire en reliant chaque occurrence à la racine.
- 7. Établisser le code en lisant l'arbre construit du sommet aux feuilles et en attribuant par exemple la valeur O aux branches basses et 1 aux branches hautes.