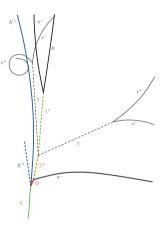


Jean-Marc Richard

INTRODUCTION À LA PHYSIQUE DES HADRONS

Symétries, structure et dynamique

Jean-Marc Richard


La collection « New frontiers in Nuclear Physics » rassemble des ouvrages traitant de physique nucléaire au sens large, incluant l'astrophysique nucléaire et la physique hadronique, ainsi que les interfaces avec d'autres disciplines aux frontières des connaissances actuelles. Cette collection est conçue pour être accessible aux étudiants de Master, ainsi qu'aux chercheurs désirant acquérir l'état de l'art sur un sujet spécifique. Les sujets sont abordés avec pédagogie, présentant les étapes clefs et les expériences cruciales du domaine, ainsi qu'un développement rigoureux qui mène le lecteur à la pointe des découvertes les plus récentes.

L'ouvrage présente un panorama des particules élémentaires à interactions fortes, comme le proton et le neutron, constituants du noyau, le pion qui assure leur liaison, et toutes leurs excitations. Le modèle des quarks est exposé en détail. Il propose une description unifiée de tous ces hadrons et s'étend aux particules avec étrangeté, charme ou beauté

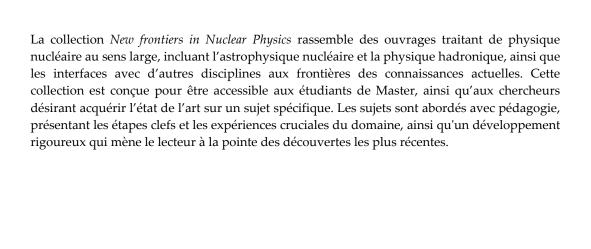
La présentation fait une large place à l'histoire, et même à quelques anecdotes piquantes qui ont jalonné les progrès théoriques et expérimentaux. Mais les aspects les plus modernes sont également exposés, comme la chromodynamique quantique et les théories effectives, les fonctions de structure, les propriétés électromagnétiques des hadrons, et enfin leur désintégration par interaction faible. Les spéculations sur les hadrons exotiques permettent de comprendre l'enjeu de certaines expériences sur les collisionneurs actuels, notamment le LHC.

La lecture ne requiert pas d'autre préalable que quelques notions de physique quantique. Ce livre s'adresse aux étudiants de M1 et M2, ainsi qu'aux physiciens et chimistes désirant s'initier au monde des hadrons, que se partagent la physique nudéaire et la physique des particules. La compréhension peut être testée par les dizaines d'exercices qui sont proposés, ainsi qu'une solution pour certains d'entre eux.

Jean-Marc Richard, diplômé de l'École Normale Supérieure, a occupé différents postes d'enseignant-chercheur en France (universités Paris-Sud, Paris-6, Grenoble-1 et Lyon-1) mais aussi à l'étranger (Stony-Brook et Brookhaven - N.Y., Aarhus - Danemark, Heidelberg et Bonn - Allemagne), ainsi que dans des centres internationaux comme l'Institut Laue-Langevin (Grenoble), le CERN (Genève) et ECT* (Trento). Ses travaux ont porté sur les interactions entre hadrons, le modèle des quarks, les systèmes atomiques à petit nombre de charges, les atomes exotiques, la désintégration faible des saveurs lourdes, la violation du nombre baryonique et les propriétés mathématiques des systèmes quantiques à petit nombre de corps.

Reconstruction annotée du diché de chambre à bulles du 31 janvier 1964 correspondant à la découverte du Ω. Le code des couleurs est : noir pour les leptons. Photons et hadrons non étranges, bleu pour l'étrangeté S = 1, vert pour S = -1, olive pour S = -2 et rauge pour S = -3. Les particules en pointillé, neutres, sont invisibles et sont reconstruites sur le schéma par conservation de l'énergie et de la quantité de mouvement à chaque vertex. Les deux photons viennent de la désintégration immédiate du π° après la réaction =° → Λ° + π°.

ISBN: 978-2-7598-2215-7



Jean-Marc Richard

INTRODUCTION À LA PHYSIQUE DES HADRONS

Symétries, structure et dynamique

Cet ouvrage a été composé à l'aide de KOMA-Script et de LaTeX en utilisant la classe kaobook. Le code source est disponible à l'adresse : https://github.com/fmarotta/kaobook

Imprimé en France

ISBN (papier): 978-2-7598-2215-7 - ISBN (ebook): 978-2-7598-2649-0

Tous droits de traduction, d'adaptation et de reproduction par tous procédés, réservés pour tous pays. La loi du 11 mars 1957 n'autorisant, aux termes des alinéas 2 et 3 de l'article 41, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective », et d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (alinéa 1er de l'article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du code pénal.

Unfassbare Ideen äußern sich in fassbaren Formen August Macke

Arx tarpeia Capitoli proxima Proverbe romain

Va, petit livre, et choisis ton monde; car, aux choses folles, qui ne rit pas, bâille; qui ne se livre pas, résiste; qui raisonne, se méprend; et qui veut rester grave, en est maître Rodolphe Töpffer

Préface

Over several decades, Jean-Marc and his collaborators have made many contributions to Hadron Physics and the book reflects the contribution of Jean-Marc et al., both in the choice of examples and in the material.

One of the many attractive features is the attention to history with many amusing anecdotes: some involving the author. Beyond the contributions of Jean-Marc, the book also covers many European contributions neglected in some of the literature.

For example, the earliest enigma: the measurement of the proton magnetic moment by Otto Stern in the 1930s. It took thirty years to understand the result by the brightest theorists (Murray Gell-Mann, George Zweig) that the proton is a composite system. And another decade until the majority of the field accepted this conclusion, one of the main achievements of twentieth century science, on par with the big bang, double-helix quantum mechanics, etc. But of course some obscurity remains about confinement as with wave-particle duality, etc.

The book is original in many ways. An important one is the restriction to hadrons. Most current books deal with both hadrons and leptons.

I am sure the book will become a classic and will be translated.

Gabriel Karl Emeritus Professor University of Guelph (Canada)

Avant-propos

Je remercie EDP Sciences et le directeur de collection d'avoir sollicité la rédaction de cet ouvrage. Le plus difficile a été de limiter le sujet, car des hadrons on glisse facilement vers la chromodynamique et le modèle standard, et de l'interaction nucléon-nucléon vers les noyaux et même aux étoiles à neutrons. Or il n'était pas question d'écrire une encyclopédie de physique sub-atomique.

À regret il a fallu aussi renoncer à des développements trop techniques, et se contenter sur certains sujets d'aiguiser l'appétit des lecteurs qui devront aller chercher des ouvrages ou des articles de revue plus spécialisés.

Enfin, on pardonnera le travers de couper le fil de l'exposé avec des anecdotes parfois trop connues et à l'authenticité douteuse, sauf pour celles dont j'ai été le témoin direct.

Le plan adopté est d'esquisser d'abord l'histoire de la physique des hadrons, puis de présenter la construction des hadrons à partir des quarks, et enfin de discuter des interactions fortes, électromagnétiques et faibles des hadrons.

Des exercices sont proposés dans chaque chapitre et une solution de certains d'entre eux est donnée à la fin de l'ouvrage.

Il est impossible de citer tous les maîtres et collaborateurs qui m'ont inculqué, non sans mal, les notions qui sont présentées ici, mais je leur exprime toute ma gratitude. Une mention spéciale est due à André Martin (1929-2020) qui m'a initié aux méthodes rigoureuses et m'a fait partager certains de ses travaux sur le modèle des quarks et les systèmes de charges.

Je suis très reconnaissant à Elie Aslanides, Claude Fayard et Jérôme Margueron d'avoir relu la première version de cet ouvrage. Ils ont prodigué des critiques très constructives et corrigé nombre de coquilles. Des remerciements sont dûs également à Federico Marotta qui a mis à notre disposition son style de composition « kaobook » et y a apporté les adaptations nécessaires.

Last but not least, je remercie chaleureusement mon ami de longue date Gabriel Karl d'avoir accepté d'écrire une préface. Son sens physique, sa culture scientifique pluridisciplinaire, son enthousiasme communicatif et son humour parfois décapant ont accompagné plusieurs générations de physiciens et inspiré bien des vocations.

Table des matières

Pr	éface		v
Av	vant- _j	propos	vii
1	His	toire	1
	1.1	Les premiers hadrons	2
	1.2	Les résonances	3
	1.3	Le moment magnétique du proton	4
	1.4	La découverte de l'antiproton	5
	1.5	Étrangeté	6
	1.6	Le modèle des quarks	8
		La voie de l'octet	8
		La règle de Zweig	10
	1.7	Le charme et la beauté	11
	1.8	Radiographie des nucléons	13
	1.9	Chromodynamique quantique	13
	Exe	rcices	15
	Réfé	rences	15
2	Clas	ssification	21
	2.1	Quarks et leptons	21
	2.2	Les bosons de jauge	22
	2.3	Les hadrons ordinaires	23
		Mésons	24
		Baryons	26
	2.4	Hadrons exotiques	27
	Exe	rcices	29
	Réfé	grences	29
3	Les	instruments et les méthodes	31
	3.1	Les rayons cosmiques	31
	3.2	Les accélérateurs hadroniques	31
	3.3	Les machines à électrons	35
		Les collisionneurs électron-positon	35
		Rayonnement synchrotron et Compton inverse	35
		Collisions électron-proton et électron-noyau	36
	3.4	Cibles fixes ou collisionneurs?	36
	3.5	Les détecteurs	37
	3.6	Les outils de l'analyse	38
		Cinématique	38

	Espace de phase	39
	Masse invariante	40
	Désintégration en deux corps	40
	Désintégration en trois corps. Diagramme de Dalitz	43
		43
	Exercices	
	Références	49
4	Symétries	51
	4.1 Isospin des hadrons	51
	4.2 Conjugaison de charge	53
	4.3 Parité isotopique ou <i>G</i> -parité	55
	4.4 Isospin des antiparticules	56
	4.5 La symétrie de saveur SU(3) _F	57
	4.6 La symétrie SU(6)	59
	4.7 Le charme et SU(4)	59
	4.8 Le nombre baryonique	60
	Annexe 4.A SU(2) et SU(3)	62
	Rotations	62
	Le groupe SU(3)	65
	Exercices	67
	Références	69
	included	0)
5	Le quarkonium	71
	5.1 Le spectre expérimental	71
	5.1 Le spectre expérimental	71 72
	5.2 Le modèle non relativiste	72
	5.2 Le modèle non relativiste	72 74
	 5.2 Le modèle non relativiste	72 74 76
	 5.2 Le modèle non relativiste	72 74 76 77
	5.2 Le modèle non relativiste	72 74 76 77 78
	5.2 Le modèle non relativiste	72 74 76 77 78 79
	 5.2 Le modèle non relativiste 5.3 Rappels sur l'équation de Schrödinger 5.4 Conséquences de l'indépendance de saveur 5.5 Ordre des niveaux 5.6 Fonction d'onde à l'origine 5.7 Corrections dépendant du spin États S États P 	72 74 76 77 78 79
	5.2 Le modèle non relativiste	72 74 76 77 78 79 79 81
	5.2 Le modèle non relativiste	72 74 76 77 78 79 79 81 82
	5.2 Le modèle non relativiste	72 74 76 77 78 79 79 81 82 83
	5.2 Le modèle non relativiste	72 74 76 77 78 79 79 81 82 83 85
	5.2 Le modèle non relativiste	72 74 76 77 78 79 79 81 82 83 85 86
6	5.2 Le modèle non relativiste 5.3 Rappels sur l'équation de Schrödinger 5.4 Conséquences de l'indépendance de saveur 5.5 Ordre des niveaux 5.6 Fonction d'onde à l'origine 5.7 Corrections dépendant du spin États S États P Mélange orbital 5.8 Production et désintégration 5.9 Le quarkonium par les règles de somme de QCD 5.10 Quarkonium par la QCD sur réseaux Exercices Références	72 74 76 77 78 79 81 82 83 85 86 88 91
6	5.2 Le modèle non relativiste 5.3 Rappels sur l'équation de Schrödinger 5.4 Conséquences de l'indépendance de saveur 5.5 Ordre des niveaux 5.6 Fonction d'onde à l'origine 5.7 Corrections dépendant du spin États S États P Mélange orbital 5.8 Production et désintégration 5.9 Le quarkonium par les règles de somme de QCD 5.10 Quarkonium par la QCD sur réseaux Exercices Références Les baryons	72 74 76 77 78 79 81 82 83 85 86 88 91
6	5.2 Le modèle non relativiste 5.3 Rappels sur l'équation de Schrödinger 5.4 Conséquences de l'indépendance de saveur 5.5 Ordre des niveaux 5.6 Fonction d'onde à l'origine 5.7 Corrections dépendant du spin États S États P Mélange orbital 5.8 Production et désintégration 5.9 Le quarkonium par les règles de somme de QCD 5.10 Quarkonium par la QCD sur réseaux Exercices Références Les baryons 6.1 Le cas de trois quarks identiques	72 74 76 77 78 79 81 82 83 85 86 88 91 95 96
6	5.2 Le modèle non relativiste 5.3 Rappels sur l'équation de Schrödinger 5.4 Conséquences de l'indépendance de saveur 5.5 Ordre des niveaux 5.6 Fonction d'onde à l'origine 5.7 Corrections dépendant du spin États S États P Mélange orbital 5.8 Production et désintégration 5.9 Le quarkonium par les règles de somme de QCD 5.10 Quarkonium par la QCD sur réseaux Exercices Références Les baryons 6.1 Le cas de trois quarks identiques Mouvement intrinsèque	72 74 76 77 78 79 81 82 83 85 86 88 91 95 96
6	5.2 Le modèle non relativiste 5.3 Rappels sur l'équation de Schrödinger 5.4 Conséquences de l'indépendance de saveur 5.5 Ordre des niveaux 5.6 Fonction d'onde à l'origine 5.7 Corrections dépendant du spin États S États P Mélange orbital 5.8 Production et désintégration 5.9 Le quarkonium par les règles de somme de QCD 5.10 Quarkonium par la QCD sur réseaux Exercices Références Les baryons 6.1 Le cas de trois quarks identiques	72 74 76 77 78 79 81 82 83 85 86 88 91 95 96

		Deuxième niveau d'excitation	100
	6.2	Les autres baryons légers	100
	6.3	Le [20, 1 ⁺], enfin	101
	6.4	La résonance de Roper	103
	6.5	Les baryons étranges, charmés ou beaux	104
	6.6	Les baryons à double saveur lourde	106
	6.7	Les baryons à triple saveur lourde	107
	6.8	Le confinement de trois quarks	108
	6.A	Formalisme hypersphérique	111
	6.B	Méthode variationnelle	112
	Exer	cices	115
	Réfé	rences	117
7	Sacs		121
	7.1	Introduction	121
	7.2	Le modèle	121
	7.3	Résultats	123
	7.4	Corrections et développements divers	124
		Mouvement du centre de masse	124
		Excitations	125
		Hadrons très excités	125
		Multiquarks	125
		Sacs et forces nucléaires	127
	7.5	Modèle des sacs pour les quarks lourds	128
	7.6	Conclusion	129
	Exer	cices	130
	Réfé:	rences	130
8	Chro	omodynamique quantique	133
	8.1	La QCD	133
		Le lagrangien de la QCD	133
		La liberté asymptotique	134
		Le confinement	135
	8.2	Simulations sur réseaux	136
	8.3	La méthode des règles de somme	137
	8.4	Théories effectives	137
		Considérations générales	137
		Développement en portée	138
		Théorie effective en présence d'un quark lourd	141
		Symétrie pour les hadrons doublement lourds	142
		Symétrie entre quark lourd et diquark lourd	142
	Exer	cices	143
	Réfé:	rences	143

9	Hadı	rons exotiques	145
	9.1	Introduction	145
	9.2	Revue des résultats	146
		Remarques préliminaires	146
		Dibaryons et multibaryons	147
		Baryons exotiques	150
		Mésons exotiques	152
		Résonances très lourdes	156
	9.3	Modèles "moléculaires" pour les hadrons exotiques	157
		Généralités	157
		Noyaux légers	157
		Hypernoyaux légers	158
		Hypernoyaux charmés	159
		Baryonium	160
		Molécules méson-baryon	160
		Molécules méson-méson	161
	9.4	Les multiquarks dans les modèles de quarks constituants	162
		Liaison chromomagnétique	162
		Liaison chromoélectrique	165
		Exotiques très lourds	166
	9.5	Cordes et dualité	167
	9.6	Hybrides	169
	9.7	Les exotiques sur réseaux	171
	9.8	Les exotiques à partir des règles de somme	172
	Exer	cices	173
	Réféi	rences	174
10	La st	ructure du nucléon	183
	10.1	Introduction	183
	10.2	Cinématique de la diffusion d'électrons	184
	10.3	Facteurs de forme	184
	10.4	Modèles pour les facteurs de forme	186
	10.5	Autres facteurs de forme électromagnétiques	188
	10.6	Autres facteurs de forme	189
	10.7	Diffusion profondément inélastique et autres processus	
	10.8	Cinématique de la diffusion profondément inélastique	190
	10.9	Analyse de la diffusion profondément inélastique	191
		Loi d'échelle de Bjorken et relation de Callan-Gross	192
		Fonctions de structure	194
		Fonctions de structure généralisées	197
		Dépendance en impulsion transerve	198
	Exer	cices	199
	Réféi	rences	199

11	Le s _]	pin des quarks et des hadrons	203
	11.1	Introduction	203
	11.2	Cibles ou faisceaux polarisés	203
	11.3	Effets de spin dans la diffusion hadron-hadron	204
		Diffusion élastique pion-nucléon	205
		Annihilation en deux mésons pseudoscalaires	207
		Diffusion nucléon-nucléon	208
		Diffusion antinucléon-nucléon	209
		Formation d'une paire hypéron - antihypéron	210
	11.4	Le rôle du spin des quarks	213
		Écarts hyperfins	213
		Fonctions de structure dépendant du spin	215
	Exer	cices	216
	Réfé	rences	219
12	Inte	ractions électromagnétiques	221
	12.1	Pseudoscalaires	221
	12.2	Effet Primakoff	223
	12.3	Les moments magnétiques des baryons	223
	12.4	Le rayon de charge du neutron	225
	12.5	L'hydrogène muonique et le rayon du proton	226
	12.6	Moment quadrupolaire du Ω^-	226
	12.7	Les atomes exotiques	227
		Capture et cascade	227
		Le décalage et l'élargissement des niveaux	228
	Exer	cices	232
	Réfé	rences	234
13	Les	désintégrations faibles	237
	13.1	Aperçu des interactions faibles	237
	13.2	Des hadrons aux quarks	238
	13.3	La matrice CKM	239
	13.4	Désintégration des hadrons ordinaires	242
	13.5	Désintégration des hadrons étranges	
		Désintégration des hypérons	244
		Désintégration et oscillation des mésons étranges	244
	13.6	Désintégration du charme	250
	13.7	Désintégration de la beauté	253
	13.8	Désintégration des mésons B_c	254
	13.9	Désintégration du top	255
	Exer	cices	256
	Réfé	rences	257
14	Pers	pectives	261

15 Solution de certains exercices		263
15.1 Exercices du chapitre 1		263
15.2 Exercices du chapitre 2		264
15.3 Exercices du chapitre 3		265
15.4 Exercices du chapitre 4		272
15.5 Exercices du chapitre 5		273
15.6 Exercices du chapitre 6		275
15.7 Exercices du chapitre 7		278
15.8 Exercices du chapitre 9		280
15.9 Exercices du chapitre 10		283
15.10 Exercices du chapitre 11		283
15.11 Exercices du chapitre 12		285
15.12 Exercices du chapitre 13		288
16 Glossaire		291
Références		305
Index des sujets		
Index des noms		

Histoire 1

Plusieurs livres retracent l'histoire de la physique nucléaire et de la physique des particules. Nous ne tenterons pas de les concurrencer ni même de les résumer, mais seulement de rappeler quelques épisodes notoires pour la physique des hadrons, soit des étapes majeures, comme la découverte du méson de Yukawa ou celle du charmonium, soit des illustrations de notre difficulté à remettre en cause les concepts acquis ou à rendre justice à certains des précurseurs. Le livre de Segrè [1] contient des anecdotes savoureuses, comme celle de Pierre Curie refusant la Légion d'honneur et demandant plutôt un laboratoire digne de ce nom. Attitude dont hériteront sa fille et son gendre, qui feront comprendre aux autorités que s'ils avaient disposé de plus de moyens, le neutron aurait été français! Le livre de Pais [2] est impressionnant de concision et de précision, avec, en quelques lignes, les explications d'un brillant théoricien pour commenter chaque étape importante. Plus récente, la compilation de quelques piliers du Particle Data Group [3] est très rigoureuse et exhaustive, et, nous le verrons à propos des kaons, rétablit quelques paternités. Ce Particle Data Group (PDG), fondé par Rosenfeld, recense et compile régulièrement les données sur la physique des particules. Leur tâche n'est pas toujours facile, nous le verrons en particulier à propos des hadrons exotiques. Il arrive qu'un restaurant étoilé disparaisse du Guide Michelin [4], et aussi qu'un « candidat » soit rayé des tables de PDG. La première édition de PDG date de 1957 [5], la dernière de 2020 [6]. Noter aussi qu'en marge de la Conférence de Paris de physique des hautes énergies, s'est tenu en 1982 un colloque sur l'histoire de cette discipline, avec quelques-uns des grands pionniers [7]. Citons enfin le livre édité par Gordon Fraser [8], plus récemment celui de Donnelly et al. [9], et encore les ouvrages de Ericson et Weise [10], Donoghue et al. [11], etc.

Secrétaire d'État dans le gouvernement du Front populaire à une époque où les femmes n'avaient pas le droit de vote, Irène Joliot-Curie contribua à la création du CNRS.

On s'y réfère souvent par l'acronyme PDG.

1.1 Les premiers hadrons

L'histoire de la découverte du neutron et de l'émulation entre les équipes est racontée de façon très détailée par Jules Six dans [13]. Jules Six était un physicien du Laboratoire de l'Accélérateur linéaire d'Orsay. Avec Xavier Artru, il a écrit une chronologie des faits marquants de physique des particules des origines à 1965 [14]. On raconte que son questionnement à propos de l'évolution des paires K^0K^0 produites par annihilation est à l'origine des réflexions profondes de B. Despagnat sur l'interprétation de la mécanique quantique [15]. Pour plus de références sur l'histoire de la physique nucléaire, voir, par exemple, [16].

Dans la suite, nous adopterons souvent des unités simplifiées où $\hbar = c = 1$, avec en particulier les longueurs en GeV⁻¹ et les paramètres de portée en GeV.

On cite souvent un mot de Rabi "who ordered the muon?". Rabi est le père ou le grand-père de la RMN et tout le monde a transpiré un peu dans les cours de mécanique quantique pour démontrer la formule de Rabi qui donne la réponse d'un système à deux niveaux soumis à une excitation sinusoïdale. Il y a quelques années, une équipe de Nantes a utilisé la RMN pour distinguer de manière non invasive le sucre naturel du sucre artificiel dans le Muscadet et permettre de traquer les fraudes à la chaptalisation, preuve que la physique quantique est parfois utile.

Nous ne reviendrons pas sur la préhistoire, avec la découverte de la radioactivité par Becquerel en 1896, puis l'étude de cette radioactivité par plusieurs physiciens dont les Curie et Rutherford. La physique nucléaire s'est développée au début du 20^e siècle. La charge du noyau est exactement un nombre entier, Z, de fois la charge du proton, et la masse approximativement un nombre entier, A, de fois la masse du proton. S'est imposée assez vite l'idée de noyaux composés de Z protons et N = A - Z « neutrons », avec pratiquement la même masse *m* pour chacun des deux « nucléons », proton et neutron, si bien que la masse des noyaux est à peu près *A m*, un peu diminuée par l'énergie de liaison. Restait à trouver le neutron : soupçonné dans des expériences de Walter Bothe et Herbert Becker [12], ainsi que d'Irène et Frédéric Joliot-Curie, il a été identifié par Chadwick.

Des forces nucléaires sont nécessaires pour vaincre la répulsion électrostatique entre les protons et assembler les protons et les neutrons. Yukawa proposa un modèle analogue à l'échange du photon en QED, à savoir l'échange d'un boson massif, ce qui correspond à un potentiel $-g \exp(-a r)/r$, une forme fonctionnelle que l'on retrouve par exemple dans l'écrantage de Debye des charges plongées dans un milieu [17]. Ici, le paramètre de portée a est relié à la masse m de la particule échangée, $a=(m c^2)/(\hbar c)$, avec $\hbar c \simeq 0,2$ GeV fm. Pour une paire proton-proton, le potentiel de Yukawa domine le terme électrostatique aux faibles valeurs de la distance r, mais décroît très rapidement quand r augmente.

Avant la guerre, on a cru découvrir le pion dans les rayons cosmiques. Mais la particule détectée traversait facilement la matière, alors que le pion de Yukawa doit interagir fortement avec les noyaux. En fait, on avait découvert les muons, μ^+ et μ^- , sorte de version lourde des électrons. Ces muons, tout à fait inattendus, sont les produits de la désintégration faible des pions. La particule de Yukawa, le pion, fut découverte dans les rayons cosmiques, par une équipe travaillant à Bristol (GB), en 1947 [18]. Et la physique des hadrons commença, avec les nucléons et les pions.

1.2 Les résonances

Déjà un peu avant la guerre, puis plus franchement dans les années cinquante, des accélérateurs prirent le relais des rayons cosmiques. Ce fut particulièrement le cas pour la physique des pions. Quelques propriétés des pions furent mesurées, comme leur parité, et des réactions comme $\pi + d \rightarrow N + N$ furent observées. Avec la montée en énergie, motivée particulièrement par la production d'antiprotons qui sera décrite dans la section suivante, on commença à étudier la production simultanée de plusieurs pions et l'interaction des pions et des nucléons, et des résonances firent leur apparition.

C'est un concept compliqué que celui de résonance quand on cherche à être rigoureux, mais au stade qualitatif, on peut se contenter de définir une résonance comme un pic dans la distribution de masse. En mécanique quantique, imaginons un potentiel g V(r), où V est attractif, tel qu'on ait un état lié pour $g \geq g_0 > 0$, de moment orbital $\ell > 0$. Pour $g < g_0$ mais pas trop éloigné de g_0 , on aura une augmentation assez marquée de la section efficace autour d'une certaine énergie, et on pourra estimer la largeur à mi-hauteur du pic. S'il s'agit d'une onde S ($\ell = 0$), le pic est moins prononcé, et il est plus délicat d'identifier une résonance.

Le méson ρ a été vu comme une résonance dans la distribution de la masse de deux mésons π , sous trois états de charge ρ^+ , ρ^0 , ρ^- . Le pic correspond à une masse $m \simeq 0.77\,\mathrm{GeV}$ et une largeur $\Gamma \simeq 0.150\,\mathrm{GeV}$. Un autre méson, baptisé ω , a été vu dans l'état neutre seulement, avec un masse similaire $0.78\,\mathrm{GeV}$, et une largeur plus faible $0.008\,\mathrm{GeV}$, dans la distribution de masse $\pi^+\pi^-\pi^0$. Et beaucoup d'autres résonances mésoniques ont suivi, avec aussi de nouvelles méthodes de production : annihilation proton-antiproton, désintégration de particules lourdes, etc.

Dans la diffusion de pions sur nucléons, des résultats très importants ont été obtenus et ont occupé les physiciens pendant des années. Fermi (communication privée à Pais, voir [2]) a observé une nette augmentation des

d désigne ici le deutéron

La masse carrée du système est calculée à partir des quadrimpulsions comme $M^2 = (\sum \tilde{p}_i)^2$.

sections efficaces près de l'énergie dans le centre de masse $\sqrt{s} \sim 1.2$ GeV, avec des rapports

$$\sigma(\pi^{-}p \to \pi^{-}p) = \frac{1}{9} \sigma(\pi^{+}p \to \pi^{+}p) ,$$

$$\sigma(\pi^{-}p \to \pi^{-}p) = \frac{1}{9} \sigma(\pi^{+}p \to \pi^{+}p) ,$$

$$\sigma(\pi^{-}p \to \pi^{0}n) = \frac{2}{9} \sigma(\pi^{+}p \to \pi^{+}p) .$$
(1.1)

entre les probabilités de réaction que nous analyserons dans le chapitre 4 et qui caractérisent le passage par un état unique pour les voies $\pi^- p$ et $\pi^0 n$, la résonance Δ , première étape de la spectroscopie baryonique au-delà des simples nucléons. Voir Fig. 1.1. Cette résonance joue également un rôle dans la physique des noyaux, comme l'ont souligné par exemple Brown et Jackson [19], ou le groupe de Helsinki [20].

Des grands noms de la physique hadronique sont associés à ces résonances. Les témoins de cette époque ont toujours souligné la passion de ces pionniers pour leur métier, et leur acharnement à vérifier et à re-vérifier tous les résultats avant publication, une manie qui a malheureusement tendance à disparaître.

1.3 Le moment magnétique du proton

Nous reviendrons au chapitre 12 sur les interactions électromagnétiques des hadrons. Signalons ici une expérience particulièrement intéressante. Vers 1933, Otto Stern et ses collaborateurs ont réussi à déterminer le moment magnétique du proton avec une assez bonne précision. On a beaucoup raconté d'histoires sur cette mesure [21]. Par exemple, nombre de collègues éminents, dont Pauli, découragèrent Stern de se lancer dans la mesure, car selon eux, le résultat était connu d'avance, comme étant μ_N . Une variante est qu'ayant déjà le résultat dans ses tablettes, Stern aurait questionné par écrit des physiciens pour leur demander leur prédiction. Bref, la valeur proche de 3 μ_N fut une grande surprise. C'est la preuve que le proton n'est pas une simple particule de Dirac, l'équivalent lourd d'un électron. L'explication

Figure 1.1 : Résonance Δ dans la diffusion pion-nucléon.

Schématiquement, quand un pion se propage dans un noyau, il est absorbé par un nucléon et forme un Δ , puis il réapparaît lors de la désintégration de ce Δ .

À cette époque, on avait aussi l'obsession de rendre justice aux collègues en citant scrupuleusement les publications antérieures, et en les remerciant pour les discussions de vive voix ou par correspondance. Aujourd'hui, c'est parfois la jungle en comparaison, surtout chez les théoriciens.

 $\mu_N = (e/m)(\hbar/2)$, où e est la charge du proton, m sa masse, et ħ la constante de Planck divisée par 2π .

La valeur précise actuelle est $2,79285 \mu_N$.

Lhéritier, M., 6, 299 Politzer, D., 134 Lipkin, H., 163 Post, H.R., 173 Liu, K., 127 Povh, B., 149 Lorentz, H., 39, 183, 185, 198, 199 Predazzi, E., 184 Primakoff, H., 223 Lévy, M., 239 Lévy-Leblond, J.-M., 173 Ptolémée, C., 277 Maglich, B., 152 Queuille, H., 147 Quigg, C., 71, 77 Maiani, L., 11, 298 Mandelstam, S., 38, 39, 42, 184 Rabi, I., 2 Markum, H., 171 Rarita, W., 82 Martin, A., vii, 71, 77, 86, 88, 90, 95 Raynal, J.-C., 166 Maskawa, T., 240, 294 Reinders, L., 85 Merkuriev, S., 297 Richard, J.-M., 166 Michel, L., 55 Rider, Alan H., 12 Miller, G., 128 Riska, D., 128 Mills, A., 231 Rochester, G., 7 Mills, R., 14, 133 Roper, L.D., 100, 101, 103, 107, 115, Montanet, L., 34, 301 137 Rosen, N., 248 Nachtmann, O., 195 Rosenfeld, A., 1, 301 Nakano, T., 150 Napoléon, 277 Rosenfeld, L., 301 Rosner, J., 71, 77 Narison, S., 172 Ross, M., 301 Navarra, F., 172 Rossini, G., 151 N'eeman, Y., 9 Rubinstein, H., 85 Newton, I., 55 Ruelle, M.E., 173 Nielsen, H., 128 Rujula [de], A., 214 Nielsen, M., 172 Rutherford, E., 2, 13, 31 Nussinov, S., 90 Sakharov, A., 54 Okubo, S., 57, 68, 69 Sakurai, J., 186 Okun, L., 245 Samios, N., 9 Oliver, L., 166 Sandhas, W., 297 Ore, A., 173 Schmid, C., 167 Pais, A., 1, 3 Schrödinger, E., 64, 74, 107, 112 Pati, J., 228 Schwinger, J., 78, 79, 82, 89 Segrè, E., 1, 5 Pauli, W., 4, 23, 52, 63, 205, 223, 237 Shapiro, I., 160, 163, 230 Pène, O., 166 Shifman, M., 85 Perl, M., 12 Six, J., 2 Podolsky, B., 248 Skyrme, T., 138

Snow, G.E., 228

Poisson, S., 78

Soffer, J., 215 Stancu, F., 163 Steiner, J., 110 Sterbini, C., 151 Stern, O., 4, 223, 247 Sternheimer, R., 226, 287 Sucher, J., 228

Taxil, P., 111, 166
Taylor, B., 140
Taylor, R., 13
Telegdi, V., 245
Teresi, D., 245
Thomas, A., 128
Thorn, Ch., 125
Todd, A.R., 245
Torricelli, E., 110, 129
Trueman, L., 229, 23

Trueman, L., 229, 232, 233

Turlay, R., 7, 248, 301

Urey, H., 147

Vainshtein, A., 85 Viviani, V., 38, 43, 110, 267

Watson, K., 203

Weinberg, S., 139
Weise, W., 1
Weisskopf, V., 273
Wheeler, J., 173
Wick, G.C., 207
Wilczek, F., 134
Wilson, Ch., 37
Wilson, K, 86
Wilson, R.R., 12
Wolfenstein, L., 242
Wong, C., 127
Wu, C.S., 42, 245, 246, 296, 301

Yakubovsky, O., 297 Yan, T.M., 189 Yang, C.N., 14, 55, 68, 133, 160, 223, 245, 301 Yazaki, K., 85 Yazaki, S., 85 Yukawa, H., 1, 2, 31, 68, 128, 140, 261, 302

Zakharov, V., 85 Zel'dovich, Ya., 230 Zhu, S.L., 164, 172 Zweig, G., 10, 11, 72, 76, 84, 128