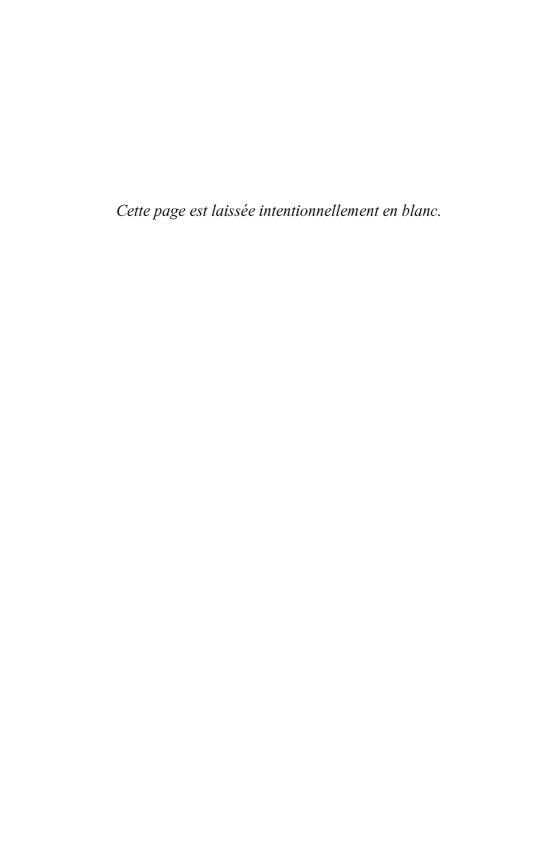


Bernard CAGNAC - Jean-Pierre FAROUX

• LASERS


Interaction lumière-atomes

LASERS Interaction lumière-atomes

Bernard Cagnac Jean-Pierre Faroux

LASERS Interaction lumière-atomes

Illustration de couverture :

Relation entre le diamètre minimum (waist) et l'ouverture angulaire du faisceau gaussien (Fig. 15.7, p. 362)

© 2002, EDP Sciences, 7, avenue du Hoggar, BP 112, Parc d'activités de Courtabœuf, 91944 Les Ulis Cedex A

CNRS ÉDITIONS, 15, rue Malebranche, 75005 Paris.

Tous droits de traduction, d'adaptation et de reproduction par tous procédés réservés pour tous pays. Toute reproduction ou représentation intégrale ou partielle, par quelque procédé que ce soit, des pages publiées dans le présent ouvrage, faite sans l'autorisation de l'éditeur est illicite et constitue une contrefaçon. Seules sont autorisées, d'une part, les reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective, et d'autre part, les courtes citations justifiées par le caractère scientifique ou d'information de l'œuvre dans laquelle elles sont incorporées (art. L. 122-4, L. 122-5 et L. 335-2 du Code de la propriété intellectuelle). Des photocopies payantes peuvent être réalisées avec l'accord de l'éditeur. S'adresser au : Centre français d'exploitation du droit de copie, 3, rue Hautefeuille, 75006 Paris. Tél.: 01 43 26 95 35.

ISBN EDP Sciences 2-86883-528-7 **ISBN** CNRS ÉDITIONS 2-271-05954-2

Table des matières

In	trod	uction	xiii
		e I. Action d'un champ électromagnétique que sur un système à deux états quantiques	1
1	Act 1.1 1.2	ion d'une onde classique sur un atome isolé Hamiltonien de l'interaction dipolaire électrique	3 3
	1.3 1.4	Cas d'un seul atome non perturbé. Oscillation de Rabi pure Les expériences de Rabi sur jet atomique	10 12
2	Équ	nations différentielles de Bloch	17
	$2.1 \\ 2.2$	Introduction des variables collectives, moyennées sur les atomes Expression de l'équation de Schrödinger avec les nouvelles	18
		variables	20
	$\frac{2.3}{2.4}$	Description théorique de l'émission spontanée et des collisions Équations différentielles de Bloch	$\frac{22}{24}$
3	Soli	ution stationnaire des équations de Bloch	27
	3.1	Calcul de la solution stationnaire	27
	3.2	Les populations atomiques. Comparaison avec le modèle des probabilités de transition	29
	3.3	La polarisation atomique. Absorption et dispersion	33
	3.4	Courbes de résonance en fréquence. Élargissement de puissance	36
	3.5	Saturation	43
	3.6	Comparaison avec l'oscillateur classique. Force d'oscillateur $\ .$.	46
4	Cor	mparaison avec la résonance magnétique (spin $1/2$)	49
	4.1	Hamiltonien d'interaction avec un champ magnétique	50
		4.1.1 Rapport gyromagnétique	50
		4.1.2 Opérateur moment angulaire	50

vi Table des matières

	4.2	Équation de Schrödinger dans un champ transverse oscillant	51
	4.3	Vecteur moment magnétique atomique	53
	4.4	Vecteur de Bloch	54
		4.4.1 Référentiel tournant	54
		4.4.2 Cas d'un champ tournant. Approximation séculaire	56
	4.5	Aimantation volumique et relaxation	59
	4.6	Solution stationnaire. Observation expérimentale	61
5		ution transitoire des équations de Bloch	65
	5.1	Calcul dans le cas résonnant. Amortissement	
		de l'oscillation de Rabi	65
	5.2	Calcul de l'oscillation amortie dans le cas général,	
		non résonnant	69
	5.3	Comparaison des oscillations atomiques individuelles	
	<u>.</u> ,	avec l'oscillation collective	74
	5.4	Observation expérimentale de l'oscillation collective	80
6	_	oulsions courtes de l'onde électromagnétique	87
	6.1	Impulsions carrées résonnantes à très forte intensité	88
	6.2	Généralisation au cas d'impulsions résonnantes non carrées	91
	6.3	Impulsions carrées hors résonance. Élargissement	
		de la résonance par réduction de la durée d'interaction	93
	$6.4 \\ 6.5$	Évolution libre de la polarisation dans le noir	96
		Explication approchée	98
	6.6	Calcul exact des franges de Ramsey	102
		6.6.1 Calcul de la population après la deuxième	
		impulsion, en l'absence d'amortissement	
		6.6.2 Effet de l'amortissement	105
	6.7	Application aux expériences de physique atomique	
		et de métrologie	106
7			15
	7.1	Le hamiltonien dans la Représentation « Tournante »	116
	7.2	Cas non résonnant « déplacements lumineux » ou effet Stark	
		dynamique	
	7.3	Observation expérimentale des déplacements lumineux	
	7.4	Cas résonnant doublet Autler-Townes	
	7.5	Oscillation de Rabi à résonance	136
	7.6	Effet Bloch-Siegert et approximation séculaire (en Résonance	
		Magnétique)	139

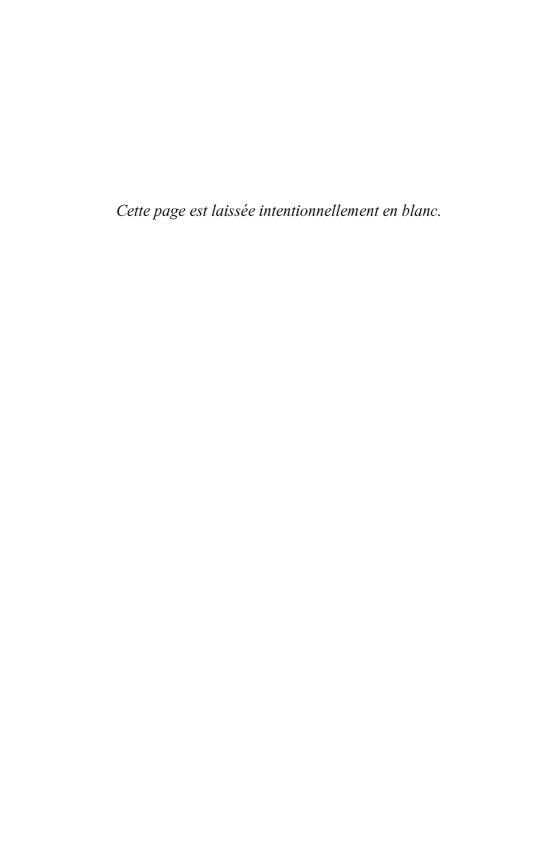
Table des matières vii

		e II. Fonctionnement des lasers dans le modèle robabilités de transition	143
8	L'ar	nplification d'une onde de lumière	147
	8.1	Les équations d'évolution des populations atomiques,	
		coefficients d'Einstein	147
	8.2	Sections efficaces d'interaction. Différence pondérée	
		des populations	151
	8.3	La saturation à forte intensité lumineuse	
	8.4	Coefficient d'absorption généralisé. L'inversion	
		des populations, condition d'amplification	156
	8.5	Les processus d'inversion ou de pompage	
		8.5.1 Le tri sur jet atomique ou moléculaire	
		8.5.2 Irradiation avec une autre onde électromagnétique	
		sur une autre transition	160
		8.5.3 Collisions électroniques, atomiques ou moléculaires	
		dans les gaz	165
_	-		
9	_	ations fondamentales du laser oscillateur ou générateur	
	9.1	Amplification et oscillation. Rôle d'une cavité résonnante	
	9.2	Constante de temps et coefficient de qualité d'une cavité	171
	9.3	Équation différentielle de l'énergie lumineuse.	150
		Seuil de fonctionnement	
	9.4	Comparaison avec le gain sur un tour de cavité	180
	9.5	Équations différentielles des populations.	400
		Exemples de modélisation	
		9.5.1 Modèle à deux niveaux	
		9.5.2 Modèle à quatre niveaux	186
10	Rég	ime continu de fonctionnement	191
	10.1	Équation de l'énergie lumineuse. Populations au seuil	191
	10.2	Raisonnement sur un tour. Gain saturé et gain non saturé	192
	10.3	Bilan stationnaire des populations. Puissance de sortie	193
		10.3.1 Modèle à deux niveaux	194
		10.3.2 Modèle à quatre niveaux	196
	10.4	Optimisation de la puissance de sortie	
		Bilan d'énergie. Compétition entre émissions spontanée	
		et stimulée	201
11	Rég	imes variables ou impulsionnels	205
_		Oscillations de relaxation, conséquence des équations	
	_	non linéaires couplées	205

viii Table des matières

	11.2	Démarrage d'un laser continu	210
		11.2.1 Laser à fibre optique, dopée au Nd ³⁺ , démarré	
		par l'irradiation du pompage optique	210
		11.2.2 Laser à décharge de très faible puissance démarré	
		par déblocage instantané de la cavité	212
	11.3	Impulsions déclenchées	215
	11.4	Calcul approché des impulsions géantes très courtes	220
	11.5	Impulsions ultra courtes en blocage de modes	225
	11.6	Dilatation et compression d'impulsion	232
12	Dive	ers types de lasers	237
		Gaz pompés par décharge électrique	
		Excimères ou Exciplexes	
		Pompage optique ou chimique dans les gaz	
		12.3.1 Pompage optique résonnant de vibrations moléculaires	255
		12.3.2 Production de molécules excitées	
		par photodissociation ou réaction chimique	258
	12.4	Pompage optique en milieu condensé. Lasers accordables	
		Lasers à semi-conducteurs	
		Chaînes d'amplificateurs pour les fortes puissances	
13	Fréc	quence de l'oscillation laser	275
-0			275
	10.1	13.1.1 Correction des fréquences de résonance d'une cavité	
		pleine	
		13.1.2 Cas d'un laser en régime continu	
	13.2	Élargissement homogène par collisions	282
		et section efficace	282
		13.2.2 Application aux transitions optiques résonnantes	
	13.3	Élargissement inhomogène. Classes d'atomes.	
		Classes de vitesses	287
		13.3.1 Classes d'atomes dans un environnement inhomogène	288
		13.3.2 Effet Doppler dans un gaz (inhomogénéité dynamique)	291
	13.4	« Hole burning », conséquence des classes d'atomes	295
		Cas des gaz en cavités : résonance de saturation et Lamb-dip	298
		Compétition de modes dans les lasers à gaz	303
14	Tech	nniques de contrôle des fréquences laser	309
		La première sélection de fréquence d'un laser accordable	309
		14.1.1 Train de prismes	
		14.1.2 Réseau de diffraction	
		14.1.3 Filtre de Lyot	
	14.2	Cavité en anneau unidirectionnelle	

Table des matières ix


		Interféromètres en cascade dans un laser accordable monomode 3:	
		Synchronisation par injection	20
	14.5	Asservissements sur une raie fine. Standards de fréquence	
		et de longueur	
		14.5.1 Le « jitter » en fréquence	
		14.5.2 Asservissement sur une raie de saturation 32	
		14.5.3 La mesure directe des fréquences optiques 32	
	14.6	Cohérence temporelle et spatiale	27
Pa	artie	III. Calcul des ondes émises 33	7
15	Le f	aisceau gaussien en espace libre 34	1
		Approximation des ondes sphériques paraxiales	
	15.2	Limitation gaussienne de l'étendue du front d'onde 34	14
	15.3	Rappel de la résolution des équations d'onde par la méthode	
		de Kirchhoff	17
	15.4	Application de la méthode de Kirchhoff à un faisceau	
		paraxial : stabilité de la solution gaussienne	
	15.5	Caractéristiques de l'onde gaussienne	
		15.5.1 Rayon gaussien du profil transversal	
		15.5.2 Rayon de courbure du front d'onde	
		15.5.3 Amplitude et phase de l'onde	
	4 F A	15.5.4 Directivité et inégalités de Heisenberg	
	15.6	Problèmes de détermination des caractéristiques gaussiennes 36)3
		15.6.1 Rayon gaussien w_1 et rayon de courbure R_1	20
		imposés dans un plan d'onde fixé P	აა
		15.6.2 Deux rayons gaussiens w_1 et w_2 imposés dans deux plans P et Q distants de D	34
	15 7	Transformation de l'onde gaussienne par une lentille 36	
	10.7	15.7.1 Action d'une lentille sur le rayon de courbure de l'onde 36	
		15.7.2 Application au cas d'une onde gaussienne	
	15.8	Aspect vectoriel de l'onde gaussienne	
16		modes d'une cavité linéaire 37	′5
	16.1	Le faisceau gaussien en cavité linéaire (modes gaussiens	
		fondamentaux)	
		16.1.1 Discussion de la validité de ces calculs de modes 3	
	400	16.1.2 Condition de résonance de la cavité	33
	16.2	Équation des ondes paraxiales (approximation de l'enveloppe	
	169	lentement variable)	54
	16.3	Solutions de l'équation paraxiale à variables x et y séparées.	o —
		Modes transverses de Hermite-Gauss	51

x Table des matières

	16.4	Mise en évidence expérimentale des modes transverses 16.4.1 Cas d'une cavité passive	
		•	
		16.4.2 Cas d'une cavité active	
	16 5	16.4.3 Modes de symétrie circulaire, de Laguerre-Gauss	
	10.5	Comparaison avec les modes guidés	401
17		pagation dépendant de la polarisation atomique Couplage des équations d'onde et des équations quantiques	405
	17.1		405
	179	Équations de Maxwell avec second membre. Ondes planes	400
	17.2	dans les milieux isolants, homogènes et isotropes	408
	173	Onde plane progressive quasi sinusoïdale (approximation	400
	11.0	de l'enveloppe lentement variable). Laser amplificateur	411
	174	Onde stationnaire dans une cavité laser (en dessous	111
	11.1	de la saturation)	415
		17.4.1 Conséquence sur la phase et la fréquence. Mode pulling	
		17.4.2 Conséquence sur l'amplitude du champ	
	17.5	Effet de la saturation dans une onde stationnaire (laser	
		oscillateur, modèle de Lamb)	422
		17.5.1 Conséquence sur la phase et la fréquence	
		17.5.2 Conséquences de l'équation sur l'amplitude	
	17.6	Propagation d'impulsions ultracourtes : aires d'impulsion	429
		17.6.1 Équations de Bloch sans relaxation	
		17.6.2 Élargissement inhomogène	
		17.6.3 Théorème des aires d'impulsion	
		17.6.4 Application à une impulsion de faible intensité	
	17.7	Impulsions ultracourtes très intenses. Autotransparence	
		17.7.1 Cas où l'aire d'impulsion est un multiple de π	435
		17.7.2 Recherche d'une loi temporelle indéformable (solitons	
		résonnants)	437
18			44 3
		Onde rayonnée par un dipôle oscillant	
	18.2	Application au dipôle atomique créé par une onde incidente	446
		18.2.1 Puissance cohérente rayonnée dans l'onde	
		dipolaire	
		18.2.2 Puissance absorbée et dissipée par un atome	
		18.2.3 Cas des processus éloignés de la résonance	
	10.9	18.2.4 Bilan des énergies échangées. Puissance incohérente	
	18.3	Interférences des ondes dipolaires dans les directions obliques 18.3.1 En milieu condensé	455
		18.3.2 Les fluctuations de densité dans un gaz	
		18.3.3 Diffusion par une onde sonore	
		TO SO DITIONAL DOLLAR CHIE CHAR SCHOLE	せいい

Table des matières xi

	18.4	Diffusion cohérente vers l'avant	463
		18.4.1 Cône de cohérence	463
		18.4.2 Faisceau incident gaussien (dispersion et absorption)	466
		18.4.3 Puissance de l'onde résultante. Amplification	469
	18.5	Superradiance due aux interactions entre voisins	470
	18.6	L'émission spontanée amplifiée (ou A.S.E., Amplified	
		Spontaneous Emission)	475
	18.7	Émission libre cohérente et échos de photons	477
		18.7.1 Brouillage des oscillations libres dans le noir	
		par les inhomogénéités	477
		18.7.2 La technique des échos	478
		18.7.3 Observation expérimentale dans les solides	
		et dans les gaz	482
19	Vect	teur dipôle atomique et polarisation des ondes	487
		Représentation standard du moment angulaire ou dipolaire	488
		Théorème de Wigner-Eckart	
		Action d'une onde polarisée circulairement	
		Probabilités de transition et coefficients d'Einstein	
		19.4.1 Transition élémentaire entre deux états quantiques	495
		19.4.2 Coefficients d'Einstein	
		19.4.3 Utilisation des probabilités de transition	498
	19.5	Diagrammes de rayonnement des transitions dipolaires	
		électriques	503
	19.6	Base standard	508
		19.6.1 Définition. Produit scalaire hermitien	
		19.6.2 Application aux polarisations standard	509
		19.6.3 Composantes standard d'un vecteur	
	19.7	Changements de base pour la polarisation lumineuse	
No	tatio	ons	515
Inc	lex		521

Introduction

CET OUVRAGE a un double but : 1) donner une première approche aussi simple que possible aux processus d'interaction entre les atomes et les ondes lumineuses, qui interviennent dans un si grand nombre de phénomènes physiques, et 2) aider tous les scientifiques ou ingénieurs qui sont amenés à utiliser des lasers et qui souhaitent en connaître le fonctionnement, voire qui ont besoin parfois de comprendre tel ou tel aspect technique de ce fonctionnement pour améliorer leur utilisation.

Ces deux finalités ne sont pas étrangères l'une à l'autre ; et c'est bien ce qui autorise à les réunir dans le même ouvrage. Elles ne se recouvrent cependant pas entièrement ; et ceci nous a conduit à découper l'ouvrage en trois parties assez différentes, et largement indépendantes, qui peuvent être lues séparément, dans l'ordre qui paraîtra le plus urgent pour le besoin immédiat de chaque lecteur.

Les lecteurs, qui souhaitent comprendre rapidement le fonctionnement des lasers, peuvent lire directement la partie II fondée sur les hypothèses phénoménologiques d'Einstein et les équations de probabilités qui en découlent (en anglais « rate équations »). Ils y trouveront l'essentiel de ce dont ils ont besoin dans la pratique courante de l'utilisation des lasers.

Mais les hypothèses de base du modèle phénoménologique ne sont pas une représentation exacte de l'interaction lumière-atomes ; et en toute rigueur, elles sont fausses. Si l'on s'en tient à cette description simpliste de l'interaction, on garde dans l'esprit des images simplistes qui ne permettent pas de comprendre les expériences modernes en optique atomique.

C'est pourquoi nous incitons vivement le lecteur à lire au moins la moitié de la partie I (chapitres 1, 2, 3 et 5) qui lui donnera une représentation plus exacte de l'interaction lumière-atomes, permettant d'expliquer toutes les expériences effectuées avec une intensité lumineuse suffisante.

Nous montrons en particulier dans les chapitres 3 et 5 dans quelles conditions expérimentales particulières les calculs quantiques exacts conduisent à des résultats collectifs identiques à ceux du modèle phénoménologique: bien que les probabilités phénoménologiques restent toujours incapables d'expliquer le comportement individuel d'un atome, tout se passe, en valeur moyenne sur un grand nombre d'atomes, « comme si » elles étaient vraies. C'est ce qui permet de les utiliser dans la partie II.

Nous avons donc cherché dans la partie I à réconcilier les deux langages, en partie contradictoires, que constituent la théorie d'Einstein et l'application rigoureuse de la mécanique quantique. On ne peut lire avec fruit cette première partie que si l'on a suivi un cours général d'introduction à la mécanique quantique. Mais nous avons voulu aussi permettre au plus grand nombre de lecteurs d'entrer dans cette explication quantique de l'interaction avec la lumière sans avoir à fournir un effort trop ardu dans les mathématiques abstraites. C'est pourquoi nous avons choisi de restreindre cette étude dans le cadre de deux grandes hypothèses simplificatrices :

- 1) Le système atomique étudié est supposé n'avoir que deux niveaux d'énergie E_a et E_b non dégénérés. Cette hypothèse, qui est rarement vraie, est cependant applicable à un grand nombre d'expériences parce que l'aspect résonnant de l'interaction électromagnétique avec la fréquence ν de l'onde $(E_b E_a = h\nu)$ fait que, très souvent dans la pratique, seuls deux niveaux d'énergie de l'atome sont réellement mis en jeu de manière significative ; on peut donc négliger l'effet sur les autres niveaux.
- 2) L'onde lumineuse interagissant avec l'atome est supposée d'assez forte intensité pour que le nombre de photons correspondants soit très élevé (cette hypothèse est, de fait, vérifiée à l'intérieur des lasers, comme à l'extérieur, pour les atomes éclairés par un faisceau laser). Dans ces conditions, il n'est pas nécessaire d'utiliser la représentation quantique du rayonnement, parce que l'on peut alors donner une signification réelle au champ électrique (ou magnétique) de l'onde ; et utiliser ce champ électrique pour écrire mathématiquement l'interaction quantique de l'onde.

C'est dans le cadre de ces deux hypothèses que nous pouvons écrire les **équations de Bloch optiques** et étudier leurs solutions.

Nous renvoyons pour la représentation quantique du rayonnement à l'ouvrage « Photons et atomes (Processus d'interaction) » de Cohen-Tannoudji, Dupont-Roc et Grynberg (dans cette même collection) qui reste l'ouvrage de référence en ce domaine. Nous excluons bien sûr du champ de notre ouvrage les expériences effectuées avec de très petits nombres de photons, et en particulier toutes celles qui portent sur les corrélations de photons.

Nous espérons ainsi permettre à un grand nombre d'étudiants ou de scientifiques non physiciens (dans leur formation première) d'entrer sans trop de difficulté dans la théorie quantique de l'interaction onde-atomes, et de découvrir les nombreux effets spécifiques, non explicables dans les modèles plus simples : oscillation de Rabi, phénomènes transitoires et impulsionnels, franges de Ramsey, « déplacements lumineux » des niveaux d'énergie, dédoublement de niveaux « Autler-Townes ». Dans chaque chapitre des descriptions d'expériences donnent immédiatement la signification physique des équations théoriques, et justifient ainsi, au fur et à mesure, l'effort accompli.

Introduction

On n'oubliera pas que ces équations quantiques sont seules capables d'expliquer les lasers émettant les impulsions ultra-courtes ou les expériences utilisant ces impulsions extrêmement courtes.

Il faut noter également que le modèle d'Einstein décrit seulement les échanges d'énergie entre les atomes et le faisceau lumineux. Mais le faisceau lumineux ne peut être décrit seulement par l'énergie qu'il transporte ; il s'agit d'une onde caractérisée par la répartition dans l'espace d'un champ électrique. La description précise de nombreuses expériences nécessite la prise en compte de cette répartition spatiale du champ. C'est pourquoi, dans la partie III, nous calculons, à partir des équations de Maxwell, les répartitions spatiales du champ couramment rencontrées dans la pratique.

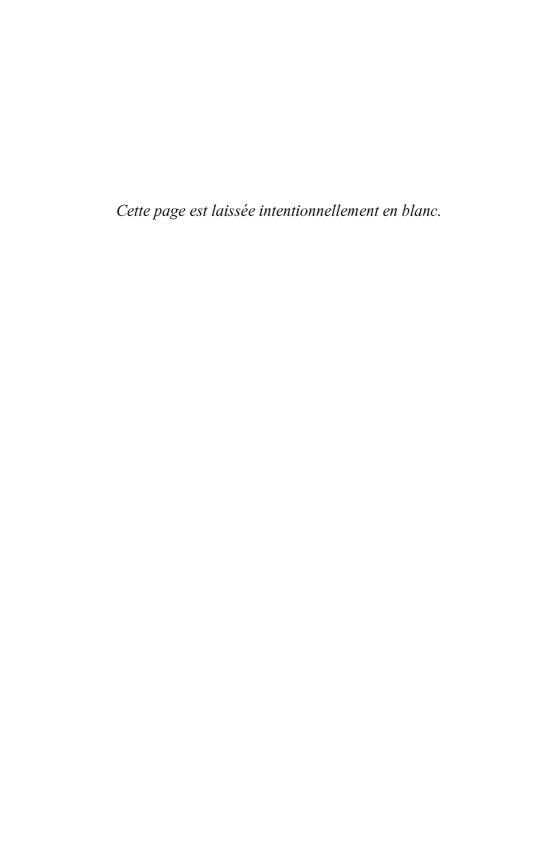
Les deux premiers chapitres de cette troisième partie n'utilisent que les équations de Maxwell et peuvent donc être lus de manière totalement indépendante des parties I et II. Dans le premier de ces chapitres (chapitre 15), nous étudions le faisceau lumineux issu d'un laser, qui se propage en espace libre avec une extension spatiale limitée malgré l'absence de diaphragme, et qui doit se substituer au modèle simpliste de l'optique géométrique. Dans le deuxième (chapitre 16), nous étudions les solutions possibles des équations de Maxwell à l'intérieur des cavités optiques utilisées dans les lasers ; c'est ce qui nous permet de décrire les modes de fonctionnement des lasers.

Dans les deux derniers chapitres de la partie III, nous ne pouvons plus être indépendants de la partie I. Nous parvenons en effet au faîte de l'édifice dessiné dans cet ouvrage; nous devons utiliser conjointement les équations de Maxwell et les équations quantiques de Bloch pour calculer comment la polarisation atomique calculée dans la partie I peut être source de l'onde engendrée à l'intérieur du laser, ou à l'extérieur du laser dans d'autres expériences courantes de diffusion de la lumière.

Nous essayons enfin, dans un dernier chapitre (chapitre 19), de donner quelques aperçus de problèmes mettant en jeu plus de deux états quantiques (niveaux d'énergie dégénérés). Ceci est en particulier absolument nécessaire pour décrire les phénomènes d'émission ou d'interaction électromagnétique en tenant compte des diverses polarisations possibles pour l'onde électromagnétique.

Une dernière remarque concernera les quelques références que nous avons citées à la fin de chaque chapitre. Il était impossible, sur des sujets aussi vastes, quarante ans après le début de l'aventure des lasers, de fournir une bibliographie exhaustive qui aurait rempli sans doute la moitié du volume de ce livre. Nous nous sommes, a priori, limités aux quelques références fondatrices qui, sur chaque sujet, ont marqué le démarrage de développements nouveaux. Mais bien sûr, nous devions également citer les références des expériences décrites pour illustrer chaque chapitre. Celles-ci ont été choisies assez arbitrairement, soit parce que nous les connaissions bien, soit parce qu'elles nous ont semblé particulièrement spectaculaires. Mais cela ne signifie

xvi Introduction


en aucune manière qu'elles soient plus importantes que de nombreuses autres qui ne sont pas citées. Que les auteurs de ces autres expériences veuillent bien nous excuser de cette sélection un peu arbitraire.

Ce livre est issu de cours spécialisés en maîtrise ou en DEA. Nous espérons rendre service aux étudiants avancés en mettant à leur disposition un exposé relativement simple, leur permettant d'éclaircir un grand nombre de phénomènes, avant de se plonger dans les exposés plus ardus et plus spécialisés, indispensables pour leurs sujets de recherche.

B. CAGNAC, J.P. FAROUX

Partie I

Action d'un champ électromagnétique classique sur un système à deux états quantiques

Pour deux vecteurs \overrightarrow{a} et \overrightarrow{b} complexes, on définit ce produit que l'on note $\langle \overrightarrow{a} | \overrightarrow{b} \rangle$, par la relation :

$$\langle \overrightarrow{a} | \overrightarrow{b} \rangle = \overrightarrow{a}^* \cdot \overrightarrow{b} = a_x^* b_x + a_y^* b_y + a_z^* b_z \tag{19-52}$$

où le point dans l'expression centrale désigne le produit scalaire classique.

Noter que l'échange des vecteurs \overrightarrow{a} et \overrightarrow{b} change le produit en son complexe conjugué. Ce produit est un nombre réel positif si $\overrightarrow{a} = \overrightarrow{b}$, ce qui est conforme à ce que l'on exige du carré d'une norme.

De la définition des vecteurs de base $\overrightarrow{e_q}$ découle la propriété :

$$\overrightarrow{e_q}^* = (-1)^q \overrightarrow{e_{-q}} \tag{19-53}$$

Tenant compte de la définition ci-dessus du produit scalaire hermitien, on montre que ces vecteurs sont orthonormés :

$$\langle \overrightarrow{e}_{q} | \overrightarrow{e}_{q'} \rangle = \overrightarrow{e}_{q}^{*} \cdot \overrightarrow{e}_{q'} = (-1)^{q} \overrightarrow{e}_{-q} \cdot \overrightarrow{e}_{q'} = \delta_{qq'}$$
 (19-54)

où $\delta_{qq'}$ est le symbole de Kroneker (égal à 1 si q=q', nul autrement).

19.6.2 Application aux polarisations standard

L'intérêt de cette base réside dans ses propriétés de transformation par rotation autour de Oz. Pour cela introduisons la dépendance temporelle $e^{-i\omega t}$; il vient :

$$e^{-i\omega t} \overrightarrow{e}_{+} = -\frac{1}{\sqrt{2}} \left[e^{-i\omega t} \overrightarrow{e}_{x} + e^{-i(\omega t - \pi/2)} \overrightarrow{e}_{y} \right]$$

Cette expression montre que la composante selon Oy oscille en quadrature retard, par rapport à la composante selon Ox. Le vecteur $e^{-i\omega t} \overrightarrow{e}_+$ est donc un vecteur tournant dans le sens positif autour de Oz. On vérifie facilement qu'il en est de même pour son complexe conjugué $-e^{i\omega t} \overrightarrow{e}_-$. Inversement on montre que le vecteur $e^{-i\omega t} \overrightarrow{e}_-$ tourne dans le sens négatif autour de Oz, ainsi que son complexe conjugué $-e^{+i\omega t} \overrightarrow{e}_+$.

Effectivement si l'on exprime les champs électriques tournants, de polarisations circulaires σ_+ et σ_- , utilisés au §19.3, on obtient pour les trois polarisations standard les expressions suivantes du champ électrique :

 σ_+ tournant dans le sens positif autour de Oz :

$$\overrightarrow{E}(r,t) = \frac{1}{2}\mathcal{E}(r) \cdot e^{-i\omega t} \overrightarrow{e}_{+} + \text{C.C.}$$

 σ_- tournant dans le sens rétrograde autour de Oz :

$$\overrightarrow{E}(r,t) = \frac{1}{2}\mathcal{E}(r)e^{-i\omega t} \overrightarrow{e}_{-} + C.C.$$

 π rectiligne parallèle à Oz:

$$\overrightarrow{E}(r,t) = \frac{1}{2}\mathcal{E}(r)e^{-i\omega t} \overrightarrow{e}_0 + \text{C.C.}$$

Ces expressions classiques, privilégiant le terme en $e^{-i\omega t}$, sont commodes parce qu'elles établissent une correspondance entre la polarisation σ_+ et le vecteur \overrightarrow{e}_+ d'une part, la polarisation σ_- et le vecteur \overrightarrow{e}_- d'autre part. Mais elles ne doivent pas faire oublier que dans les termes Complexes Conjugués (C.C), ayant le même sens de rotation, on trouve avec l'exponentielle $e^{+i\omega t}$ le vecteur $-\overrightarrow{e}_+$ conjugué de \overrightarrow{e}_+ d'une part, et le vecteur $-\overrightarrow{e}_+$ conjugué de \overrightarrow{e}_- d'autre part.

19.6.3 Composantes standard d'un vecteur

Nous avons choisi la base standard (19-51) en transposant les expressions des composantes standard (19-1) et (19-4) ; ceci implique une définition des composantes standard par rapport à la base standard, utilisant un simple produit scalaire classique :

$$\boxed{a_q = \overrightarrow{e_q} \cdot \overrightarrow{a}} \tag{19-56}$$

En effet, en explicitant le vecteur \overrightarrow{a} à l'aide de ses composantes cartésiennes :

$$\overrightarrow{a} = a_x \overrightarrow{e}_x + a_y \overrightarrow{e}_y + a_z \overrightarrow{e}_z$$

et en utilisant (19-51), on vérifie facilement que :

$$a_{+} = \overrightarrow{e}_{+} \cdot \overrightarrow{a} = -\frac{1}{\sqrt{2}} (a_{x} + ia_{y})$$

$$a_{0} = \overrightarrow{e}_{0} \cdot \overrightarrow{a} = a_{z}$$

$$a_{-} = \overrightarrow{e}_{-} \cdot \overrightarrow{a} = \frac{1}{\sqrt{2}} (a_{x} - ia_{y})$$

$$(19-57)$$

On retrouve la même forme que les expressions (19-1) et (19-4) adoptées au §19.1 pour définir les composantes standard des opérateurs vectoriels \overrightarrow{J} et \overrightarrow{D} .

Ce choix complique un peu le développement du vecteur \overrightarrow{a} sur la base $\{\overrightarrow{e_q}\}$ en associant la composante a_q avec le vecteur $\overrightarrow{e_{-q}}$ d'indice opposé :

$$\overrightarrow{a} = \sum_{q} (-1)^q a_q \overrightarrow{e}_{-q} = -a_+ \overrightarrow{e}_- + a_0 \overrightarrow{e}_0 - a_- \overrightarrow{e}_+$$
 (19-58)

on le vérifie facilement en faisant le produit scalaire classique de cette expression avec les vecteurs \overrightarrow{e}_q , en tenant compte des produits scalaires classiques $\overrightarrow{e}_+ \cdot \overrightarrow{e}_- = -1$ et $\overrightarrow{e}_+ \cdot \overrightarrow{e}_+ = \overrightarrow{e}_- \cdot \overrightarrow{e}_- = 0$ qui dérivent de (19-54).

Remarque 19.5 – Si \overrightarrow{a} est un vecteur $r\acute{e}el$, et tenant compte de (19-56) et (19-53) :

$$a_q^* = \overrightarrow{e_q}^* \cdot \overrightarrow{a} = (-1)^q \overrightarrow{e_{-q}} \cdot \overrightarrow{a} = (-1)^q a_{-q}$$
 (19-59)