Current Natural Sciences

ENERGY Coordinated by Didier BLOCH, Sébastien MARTINET, Thierry PRIEM and Christian NGÔ **Li-ion Batteries Development and Perspectives**

Current Natural Sciences

ENERGY

Li-ion Batteries

Development and Perspectives

Coordinated by Didier BLOCH, Sébastien MARTINET, Thierry PRIEM and Christian NGÔ

Thanks to their improved performance and the continuous decrease of their manufacturing costs, lithium batteries, initially marketed in 1991 by SONY to power portable equipment, now play a key role in the expected massive development of electric mobility.

Connected to the electricity grid via the electrified vehicles they will power, lithium batteries will also be used as a massive means of buffering renewable energies, as well as tools for supporting the network (peak shaving, frequency regulation, etc.), making it possible to multiply their usefulness beyond their primary function (ensuring vehicle mobility).

These developments will profoundly transform our societies, and will not only make it possible to significantly reduce CO_2 emissions and the consumption of fossil fuels (oil, gas, coal), but also, if they are conducted and coordinated effectively, to contribute to economic growth.

The development of electric mobility thus offers a unique opportunity to reconcile legitimate environmental protection requirements with industrial development objectives.

The aim of this book is to provide the reader with an overview of lithium battery technologies, to give an overview of current initiatives around the world, and to outline some perspectives for the future.

The authors of this book, who are researchers at the CEA and the CNRS, all have expertise based on several years of experience in the development of lithium batteries and post-lithium ion batteries, covering all the elements of the value chain, from the design and synthesis of electrode materials to integration in the vehicle.

ISBN : 978-2-7598-2555-4

Price: 109 €

www.edpsciences.org

Current Natural Science

Coordinated by Didier BLOCH, Sébastien MARTINET, Thierry PRIEM and Christian NGÔ

Li-ion Batteries

Development and Perspectives

Printed in France

EDP Sciences – ISBN (print): 978-2-7598-2555-4 – ISBN (ebook): 978-2-7598-2567-7 DOI: 10.1051/978-2-7598-2555-4

All rights relative to translation, adaptation and reproduction by any means whatsoever are reserved, worldwide. In accordance with the terms of paragraphs 2 and 3 of Article 41 of the French Act dated March 11, 1957, "copies or reproductions reserved strictly for private use and not intended for collective use" and, on the other hand, analyses and short quotations for example or illustrative purposes, are allowed. Otherwise, "any representation or reproduction – whether in full or in part – without the consent of the author or of his successors or assigns, is unlawful" (Article 40, paragraph 1). Any representation or reproduction, by any means whatsoever, will therefore be deemed an infringement of copyright punishable under Articles 425 and following of the French Penal Code.

© Science Press, EDP Sciences, 2021

Preface

In order, in particular, to support energy transition, necessary and essential to safeguard our planet, energy storage needs will increase very sharply in the coming decades, whether for stationary applications or for mobility with a global market which should increase from 100 GWh in 2016 to 3 TWh (3000 GWh) in 2030.

Li ion batteries have a number of advantages that help meet these needs. The current challenges are to increase performances (to reach more than 350 Wh.kg⁻¹ and 1000 Wh.L⁻¹ at cell level) while aiming for increased safety and a cell target cost of around \in 80–120 per kWh. The so-called traditional Li ion is now reaching its limits in terms of mass and volume energy densities, which is pushing all scientific and industrial players towards the identification of new technological breakthroughs on new generations of batteries. Particular attention is also fundamental with regard to the sustainability of the solutions proposed by securing supplies, avoiding so-called "critical" materials in terms of environmental impact, using solvent-free processes, but also more generally by considering recycling and full battery life cycle analysis.

This book, by addressing the topic of batteries across the entire value chain from materials to the system, offers readers elements of understanding and reflection allowing everyone to have a better knowledge of the expected assets, but also of the hurdles and issues related to the development of present and new generations of Li-ion or post Li-ion Batteries. The development of these new batteries as a storage solution, beyond being useful for the development of clean energies to support the energy transition, will have a certain environmental and societal impact in the years to come.

> Severine JOUANNEAU SI LARBI, Head of the Electricity and Hydrogen Department for Transport at CEA/LITEN

Contents

Prefa			III
CHA	PTER	1	
Intro	duction	1	1
1.1	Brief	History of Primary and Secondary Batteries	6
1.2	Gener	al Information on Li-ion Batteries	9
Biblio	ography	y	11
CHA	PTER	2	
Posit	ive Ele	ctrode Materials for "Lithium-ion" Accumulators	13
2.1	Positi	ve Electrode Materials of "Spinel" Structure	14
2.2	Positi	ve Electrode Materials with Lithiated Layered	
	Oxide	Structure	20
2.3	Positi	ve Electrode Materials with Olivine Structure	32
Refer	ences		37
CHA	PTER	3	
Nega	tive Ele	ectrode Materials	45
3.1	Negat	ive Electrode Materials: Several Solutions	45
	3.1.1	Insertion-Intercalation	46
	3.1.2	Conversion	47
	3.1.3	Alloying	47
3.2	Carbo)n	48
	3.2.1	Historical Background	48
	3.2.2	Interest	49
	3.2.3	Relationship between Structural Characteristics	
		and Performance	50
3.3	Silicon	n	53
	3.3.1	(De)lithiation Mechanisms	53
	3.3.2	Degradation Mechanisms	54
	3.3.3	Material Improvement Approaches	56
3.4	Lithiu	ım Metal	57
Biblio	ography	y	59

88

CHAPTER 4

Orga	nic Ele	ctrode Materials	63
4.1^{-1}	Differ	ent Types of Organic Electrode Materials	65
	4.1.1	π -Extended System (Conducting Polymers)	65
	4.1.2	Stable Radical	66
	4.1.3	Organosulfides & Thioethers	67
	4.1.4	Carbonyl Functions	67
	4.1.5	Aromatic Amines	68
4.2	Imple	mentation Strategies	68
	4.2.1	Grafting on Inorganic or Organic Support	69
	4.2.2	Polyanionic Salt Formation	71
Refer	ences	· · · · · · · · · · · · · · · · · · ·	74
CHA	PTER	5	
Elect	rolvtes	and Separators	79
5.1	Liquio	l Electrolytes	80
	5.1.1	Lithium Salts and Organic Solvents	80
	5.1.2	Lithium Salts and Ionic Liquids	84
5.2	Separ	ators	85
	5.2.1	Properties of Separators	85
	5.2.2	The Separator Market	86
	523	Cost and Security	87

Bibliography.....

Na-io	n Batte	eries: Should/Can Lithium be Replaced?
6.1	Gener	al Aspects
	6.1.1	Should Lithium be Replaced?
	6.1.2	Can Lithium be Replaced? Towards a 100% Abundant
		Element-Based Battery
6.2	The N	a-ion Technology
	6.2.1	Brief History
	6.2.2	Operating Principle
6.3	State	of the Art
	6.3.1	Negative Electrode Materials
	6.3.2	Non-Carbon Materials
	6.3.3	Positive Electrode Materials
	6.3.4	Electrolytes and Interfaces 101
6.4	Full S	ystem Performance
6.5	Outlo	ok
	6.5.1	Low Cost Approach 102
	6.5.2	High Power Approach 103
Refer	ences .	103

CHAPTER 7

Metal	-Sulfur	Batteries	107
7.1	The M	letal-Sulfur Cell	107
	7.1.1	Advantages and Comparison with Other Technologies	107
	7.1.2	Working Mechanism of the Metal-Sulfur Cell	108
	7.1.3	The (Li,Na)-ion Sulfur Cell	110
7.2	Techno	blogy State of the Art and Performances	110
	7.2.1	Main Actors	110
	7.2.2	Understanding the Complex Mechanism	110
	7.2.3	Development Strategies	112
	7.2.4	All-Solid-State Metal-Sulfur Batteries	119
	7.2.5	Industrial Actors	119
7.3	Perspe	ectives and Applications	121
Biblio	graphy		122

CHAPTER 8

All Solid-State Batteries	125		
8.1 Introduction and Overview	125		
8.2 Main Families of Solid Ionic Conductors	127		
8.2.1 Polymeric Solid Electrolytes	127		
8.2.2 Inorganic Solid Electrolytes	130		
8.2.3 Hybrid Solid Electrolytes	133		
8.3 Electrochemical Stability of Solid Electrolytes	135		
8.4 All-Solid-State Cells	137		
8.5 Academic & Industrial Players	138		
Bibliography1			

Supercapacitors: From Material to Cell.			
9.1	Operating Principle.		
9.2	Carbo	n/Carbon Based Technology	152
	9.2.1	Electrode Design and Components	152
	9.2.2	Electrolyte	166
	9.2.3	Separators	176
9.3	Hybrid	l Systems	179
	9.3.1	Activated Carbon/MnO ₂ System	181
	9.3.2	Lead Oxide/Activated Carbon System	182
	9.3.3	NiOOH/Activated Carbon System	182
	9.3.4	Graphite/Activated Carbon System	182
Biblio	graphy		186
CHAF	PTER 1	10	

Superca	apacitors: Cells and Modules	199
10.1	Cell Design	199

	10.1.1	Small Cells	200
	10.1.2	High-Capacity Cells	200
10.2	Design	of Modules and Systems	207
	10.2.1	Modules Based on Hard Casing Cells	208
	10.2.2	High Capacity Modules Based on Soft Packaging Cells	
		(Pouch Cells)	213
	10.2.3	High Capacity Modules Working in Aqueous Medium	216
Bibliog	graphy.		218

CHAPTER 11

Charac	terizatio	n of the Electrical Performance of Li-ion Cells	221
11.1	Charact	erization of the Electrical Performance of Individual Cells	221
	11.1.1	Acceptance Tests	221
	11.1.2	Beginning of Life Performance Tests	223
	11.1.3	Ageing Performance Tests	227
11.2	Resistar	nce Measurements of Individual Cells	229
	11.2.1	Introduction	229
	11.2.2	How to Define an Internal Resistance?	229
	11.2.3	Different Methods of Measuring Internal Resistance	231
	11.2.4	Conclusion	243
Bibliog	raphy		244

Microst	uctural and Physical and Chemical Characterizations	
of Batt	ry Materials	45
12.1	ntroduction: Characterization Methodology to Understand	
	he Electrochemical Response of a Battery 24	45
12.2	Analysis of Mechanisms Associated with Exchangeable	
	Lithium Loss	49
	12.2.1 SEI Formation and Li Metal Precipitation	
	on Negative Electrode 24	49
	12.2.2 Loss of Lithium Content of Positive Electrode	52
12.3	Analysis of Phase Transformations that Limit Lithium Mobility 2	54
	12.3.1 Microstructural Modification of a Positive Electrode 2	54
12.4	Mechanical Blocking, Obstruction, Disconnection and Loss	
	of Electrical Contact	55
	12.4.1 Loss of Graphite Electrode Capacity in Cycling at Low	
	Temperatures	55
	12.4.2 Exogenous Deposits 2	57
12.5	Electrolyte Degradation	58
12.6	Perspectives	59
Bibliog	aphy	59

CHAPTER 13

Cells and	l Electrodes Manufacturing Process				
13.1 G	General Principles				
13.2 C	Cell Design				
13.3 E	lectrode Manufacturing Process				
1	3.3.1 Electrode Formulation				
1	3.3.2 Slurry Preparation				
13.4 E	lectrodes				
1	3.4.1 Calendering				
13.5 C	Cell Fabrication Process				
1	3.5.1 Slitting				
1	3.5.2 Cell Assembly				
1	3.5.3 Electrolyte Filling				
1	3.5.4 Electrical Formation				
13.6 C	Cells Bill of Materials and Cost Aspects				
13.7 N	Iew Processes/Perspectives				
13.8 C	Conclusion				
Bibliogra	phy				

CHAPTER 14

Battery	System and Battery Management System (BMS)	279
14.1	Battery System Architecture	279
14.2	Battery System in Its Electrical Environment	281
14.3	Power Component Associated to Battery Pack	284
14.4	Multiples Functions of BMS	287
14.5	Design and Manufacture of Battery Packs	293
14.6	Examples of Innovation on Battery Systems	296
Referen		301

Definition	n of the	e State Estimation Algorithms of a Battery System	
and Asso	ciated	Calculation Methods.	303
15.1 Ba	attery	State Indicator Definition	303
1	5.1.1	State of Charge	303
1	5.1.2	State of Energy	304
1	5.1.3	State of Health	304
1	5.1.4	State of Function	305
1	5.1.5	State of Safety	305
15.2 Ba	attery	Diagnosis Methods	306
1	5.2.1	State of Charge Estimation	307
1	5.2.2	Kalman Filter Exploitation for State of Charge Estimation	312
1	5.2.3	Battery Total Capacity Estimation	312
1	5.2.4	Alternative Battery State Diagnosis Method	315
Bibliogra	phy		316

CHAPTER 16

Standa	rds and	Safety	317									
16.1	Phenomena Involved in Abusive Conditions											
	16.1.1	Phenomena at Cell Level	319									
	16.1.2	Phenomena at Module and Pack Level	323									
16.2	Regulat	tion	325									
16.3	Standards											
16.4	Tests and Additional Analysis											
16.5	Solutio	ns to Improve Safety at Different Levels	334									
	16.5.1	Improvement of the Components within the Cell	335									
	16.5.2	Safety Devices at Cell Level	340									
	16.5.3	Safety Devices at the Module and Battery System Level	342									
16.6	Conclus	sions and Prospects	346									
Bibliog	raphy.		347									

CHAPTER 17

Li-ion	Battery I	Recycling	51
17.1	Context	ual Elements	51
17.2	Process	Head	53
17.3	Process	Core (Separation – Valorization) 38	54
	17.3.1	Pyrometallurgy 38	54
	17.3.2	Hydrometallurgy 38	55
17.4	Conclus	36	63
Refere	nces		64

CHAPTER 18

Li-ion Batteries Environmental Impacts and Life Cycle Assessment (LCA) .	 369
18.1 Why a Focus on Battery Environmental Impacts?	 369
18.2 How to Quantify Batteries Environmental Impacts?	 370
18.3 What are the Main Impacts of Lithium-ion Batteries?	 372
18.4 What are the Impact Sources?	 379
18.5 Guidelines for Ecodesign	 381
Bibliography	 383

Applica	Applications and Markets – User Cost													385												
19.1	General	Elen	nents	of	Ma	ark	et	Aı	nal	ys	is ·	- 1	Foo	cus	0	n t	the	e E	le	cti	rif	iec	ł			
	Vehicle	Mark	et																							385
19.2	Issue of	User	Cost																							388
Referen	nces			• •	• •	• •	• •	• •	• •	•		• •		• •	• •	• •		• •	•	• •	•		• •	•	• •	389
Conclu	$sion \ldots$																									391
Glossar	y				• •	• •	• •		• •	•				• •	• •			• •	•		•		• •	•		395
The Au	uthors				• •		• •		• •	•				• •	•			• •	•				• •	•		407

Chapter 1

Introduction

Didier Bloch, Sébastien Martinet, Thierry Priem and Frédéric Le Cras

After a brief introduction, this first chapter introduces a short history of battery technologies, as well as the operating principles of Li-ion batteries.

It is now clear to everyone that the rapid and drastic greenhouse gases (GHG) emissions is an absolute imperative. This necessarily implies achieving a massive reduction in the consumption of fossil fuels (oil, gas, and coal).

Provided the electricity used to recharge vehicles is decarbonized, the deployment of battery powered electric vehicles could significantly contribute to make this possible, as it shifts the consumption of oil to electricity.

In addition, the deployment of electrified vehicles offers another decisive advantage: as electric motors happen to be much more energy efficient than internal combustion engines, it should make it possible to decrease significantly the overall energy consumption.

This is why the accelerated development of vehicle electrification is a top priority.

In France, for example, in 2019, transport, which is currently essentially oil-based (excluding rail), accounted for about 29% of the country's ~150 MTep *final energy* consumption, and contributed to ~39% of the 313 Megatons corresponding GHG emissions (figure 1.1a & b).

Slightly less than half of these emissions come from passenger vehicles alone.

The complete electrification of *e.g.* all French passenger cars and small and medium sized commercial vehicles fleets would therefore make it possible to save 32 Mtoe of oil imports (out of a total of 62 Mtoe, *i.e.* more than 50% of all oil imports), and reduce the country's overall GHG emissions by approximately 25%. Considering the 20–25 years required to completely renew a fleet of vehicles, an ambitious and proactive policy could allow achieving this goal as soon as 2040–2045.

FIG. 1.1 – (a) (left) Final Energy Consumption by sector, France, 2019. Transport accounts in France for $\approx 30\%$ of the overall final energy consumed (≈ 150 MToe), and (b) (right) GHG emissions corresponding to final energy consumption in France in 2019. Transport accounts for $\approx 39\%$ of the corresponding overall CO₂ emissions (122 Mt out of 313 Mt). (Note that the 313 Mt CO₂ final-energy-consumption-related GHG emissions correspond to only 70% of the country's global GHG emissions, which take into account additional emissions due to, *e.g.*, industrial or agricultural processes). (source : « Integration de l'electromobilite dans le systeme electrique » RTE-AVERE Report, 15 April, 2019).

In addition, the expected electromobility surge will also spread to other modes of transport, such as, to a certain extent, public and heavy transport, thus multiplying its benefits, and making it possible to achieve this objective earlier than expected.

On the other hand, the deployment of the so-called "renewable" energy (RNE), mainly solar photovoltaic and wind energy, is often being put forward, rightly or wrongly [1], as one of the other possible solutions to help meet the GHG emissions reduction challenge mentioned above. Beyond the fact that the deployment of these electrical energy production devices does not reduce GHG emissions in countries whose electrical energy is *already* decarbonised, these energies are by nature not dispatchable on demand because of their intermittency. Their deployment requires the availability of additional dispatchable electricity production means, as well as massive electricity storage buffers, capable of storing the RNE electricity when it is produced in excess, and delivering it to the grid when there is no wind or sun to meet consumer demand.

A simple calculation shows that these energy storage buffers could be partially made of the storage capacity offered by a fleet of electrified vehicles (which would simultaneously obviate the need to develop and implement specific and costly additional stationary storage means). Let us indeed consider the reasonable assumption of a French fleet of personal electrified vehicles of around 5 million units by 2030 (*i.e.* around 15% of the French personal vehicles fleet). If one considers that approximately 5 kWh are required to recharge every vehicle due to its average, daily, 35 km mileage, and taking advantage of the fact that more than 80% of personal vehicles at parked at any given time of the day, one can see that on board batteries could become a controllable electricity storage buffer system capable of storing approximately 25 GWh (5 million times 5 kWh), that can be stored at any time of the day when solar or wind energy is available. This amount represents approximately one fith of the average daily ENR French production in 2020. It therefore appears on a first hand quite smart and easy to store a significant part of the energy produced by RNE in electrified vehicles, provided the simultaneous deployment of RNE and electrified vehicles is efficiently coordinated. It is even possible to take on a second hand the logic one-step further: the deployment of bi-directional V2G/V2H (Vehicle to Grid/Vehicle to Home) connections could in return allow the vehicles to provide services to the power grid, such as peak power demand shaving, frequency regulation, and substitution of electricity for fossil fuels (oil and gas) whenever possible. Parked vehicles could also be recharged during off-peak hours and be used to directly power homes during peak hours (self consumption). These additional features will reduce the need to build additional power plants generally using fossil fuels, which would otherwise be required to produce the electrical energy in the absence of wind or sun.

Of course, the legitimate question is whether carbon-free electricity power stations will be sufficient to meet the growing electricity demand due to the take-off of the EV's market. To consider, once again, only as an example, the French case, one can reasonably imagine that if the nuclear and hydropower power capacity is *at least* maintained at its present, ≈ 450 TWh, 2021 production level, sufficient electricity should be available to meet the 100 TWh additional annual demand of the personal and light/medium sized delivery vehicles' batteries fleets. This assumes, however, a strong hypothesis: batteries should mainly be recharged at night during off-peak hours, and fast charge (>7–11 kW) during day hours should be minimized as much as possible to reduce the risk of grid instability. Additional 2–11 kW recharging could be envisaged, for example, on company's car parks charging stations during low electricity demand periods. Large scale development of fast recharging would undoubtly require additional power means, and probably a costly reinforcement of the power grid.

Properly coordinated, the concept should lead to a win–win situation for all stakeholders: every citizen will personally contribute to effectively combating climate change, and, finally yet importantly, partially amortize the purchase of the battery in his or her vehicle by selling energy back to the grid. Governments will be able to keep their word and efficiently reduce their GHG emissions, as well as their financial and political dependence on fossil fuels. Car manufacturers will sell as much cars as today. Electricity operators will play with offer and demand to reduce their investments in new power stations and offer additional, profitable services.

The implementation of this vision requires foremost the effective and vigorous coordination of public authorities, which will have to play the role of an orchestra conductor. They will have to foster the implementation of bidirectional recharging infrastructures, which will be a relatively easy task to deal with, but, above all, in close coordination with all industrial players implicated all along the energy value chain, promote the large scale implementation of batteries offering a very long cycle life (>2000–5000 charge/discharge cycles), since these batteries will be expected to perform a dual function: mainly for mobility, and also to provide grid services. Such a long cycle life will, by the way, drastically reduce their Total Cost of Ownership (TCO), expressed in ϵ /Wh exchanged, and contribute to a significant reduction of the battery environmental footprint. The expected evolution of the current technical specifications, for which the battery only provides the "mobility" function, therefore, invites to explore new technical options or to improve existing ones, from the material to the complete system.

Lithium-ion batteries will be the catalyst, the pivot of all these expected industrial and societal transformations. Initially developed to replace the nickel– cadmium batteries used at the time to power portable electronic devices, the continuous improvements in their performance and the sharp drop in their production cost now pave the way for their large-scale use as a massive, dispatchable on-demand, electricity storage means. As of today, the battery manufacturer controls a key part of the vehicle's performances and cost.

This is why the very large-scale production of lithium batteries has become a top priority issue, which conditions primarily the future of the automotive industry. As the first one built in Nevada by the Tesla company (Elon Musk) allied with the Japanese Panasonic, "Gigafactories" are now being built all over the world. Each of them mobilizes investments of several billion euros. In the majority of cases, their deployment is based on the technical know-how detained by world leaders, currently Asian (Japan, Korea, and China). As a matter of fact, these countries anticipated and prepared, as early as the beginning of the 20th century, for the major developments in mobility that are taking shape today. China has become the world's largest producer and consumer of lithium batteries in 2020, driven by its domestic market, and by a very proactive political regulation. In Europe, the construction of more than 20 Gigafactories, mainly operated by Asian industrial players, is also underway or planned: Samsung SDI and SK Innovation (Korean) are implementing factories in Hungary; LG (Korean) in Poland; Envision (Chinese) in France; CATL (Chinese) in Germany... [2].

Until then, most European car manufacturers considered batteries to be a simple commodity and expected competition from their Asian suppliers to continue to lower costs and improve performance. However, several factors combined, leading to a gradual awareness in Europe – in 2016 in Germany, mid-2018 in France – of the mandatory need to master the battery manufacturing know-how. As a matter of fact, electrified vehicles are now built "around" the embarked battery, which obviously becomes a critical component. Moreover, the expected growth of the world market will most likely lead to possible issues in battery supply, thus increasing the risk of dependence on manufacturers whose interests are likely to change rapidly depending on the geopolitical context. This awareness led in 2019–2021 to the emergence of European-born consortiums such as those led by Stellantis, Volkswagen, and other car or battery manufacturers in Sweden, France, Germany or Italy, with the partial support of European and national funding [3].

Introduction

If Europe wishes to maintain a strong car industry, it must reasonably play both sides of the coin:

- Rebuild a complete industrial sector, across the entire value chain, to manufacture, in the shortest possible time, high-performance and economically competitive batteries, and take a significant share of the fast-growing electric mobility market. As batteries will be manufactured in millions in the near future, it seems unlikely that technologies that are too far from the current state of the art will be used. This is the purpose of the "Present" of lithium-ion batteries presented in this book, to give the reader the most accurate possible idea of the technology used not only today, but in the next 10 years, as long as present-generations Gigafactories will operate.
- Actively encourage the R&D activity necessary for the development of next-generation batteries, since it will be necessary to remain competitive in the long term: this is the purpose of the Post-Li-ion or other types of batteries, presented in this book through dedicated chapters, which will provide the reader with an overview of the options explored to date.

Although the two types of initiatives are closely coupled, the first type of action appears to be more the domain of industrial leadership, and the second type of action more the domain of institutional action. In both cases, the game will involve European industrial and research players, who will be able to coordinate their efforts and select the relevant technical options. They should control and secure the entire battery value chain in a context of intense competition. The manufacture of a battery requires the mastery of a large number of skills in a wide variety of fields, from the extraction of raw materials to their recycling at the end of the battery's life and their reuse in new batteries, *via* the synthesis of active materials, the very large scale manufacture of electrodes, cells, modules, packs, and complete systems including electronic and thermal management.

The avenues for progress are real. From the point of view of the materials used as well as that of the complete on-board system, they depend largely on the functional specifications of the intended application, which has a direct influence on them.

As an example, the trend seems presently to priviledge the development of "all electric" vehicles with >50-70 kWh batteries, in order to offer the longest possible driving range. In this case, materials designed to cycle 500 times (200 000 km with 400 km per cycle) may well meet the demand. But what if the same vehicle must also be used as a grid service provider? Then the material's behaviour must be improved to meet >2000 cycles without major degradation. And what if the battery is supposed to power a Plug-In Electric vehicle (PHEV), which 12–15 kWh, much smaller, and much less material-intensive consuming battery, has on the other hand to cope with much more heavy power discharge rates to power the vehicle, must prove a much larger (>5000-10000 cyles) life expectancy to be recharged every day and offer grid services at the same time? One can see that electrode and electrolyte materials will probably be designed differently in each case. In the end, all doors remain open, in order to adapt materials and batteries to the preferences of the final consumer, the good news being that such design adaptation to meet various needs seem now within reach. Regardless of the option selected, the consortia that

will be set up will have to deal with numerous, sometimes contradictory specifications, in order to comply with the final target (reduction of greenhouse gas emissions):

- To ensure user's safety.
- To offer the battery's best possible performance: energy density and power density, of course; but also high cyclability, so as to reduce the cost of ownership per cycle, and enable the vehicle not only to meet mobility needs but also to provide other types of services to the power grid, and reduce the environmental footprint.
- To reduce the presence of sensitive or critical materials to a minimum, and if possible to zero.
- To effectively coordinate all players involved in the entire value chain, including energy producers and operators, manufacturers of electronic materials or components, car manufacturers, recycling industries, etc.
- To manufacture vehicles, especially entry-level and mid-range vehicles, accessible to the greatest number of people. Commercial success will indeed depend on many parameters: social acceptance of the electrified/connected vehicle, changes in consumer purchasing power, renewal rate of the vehicle fleet, availability of recharging systems, and development of alternative mobility solutions... A great deal of pedagogical work will be necessary in order to answer the legitimate questions of all citizens.

Europe is late, but has the skills and assets needed to catch up with the Asian industry. France and Sweden have, in Europe, key assets in this area, particularly thanks to their decarbonated energy mix. R&D collaborations are already in place and have been established for a long time (European joint projects for example).

Hurdles will be numerous but the European automotive industry survival is at stake and success is the only possible option [3].

1.1 Brief History of Primary and Secondary Batteries

The discovery of the working principle of primary batteries took place in 1800, by Alessandro Volta with the eponymous battery [5] using two different metals, zinc and copper discs, separated by a felt soaked in sodium chloride. It was not until 1859 that Gaston Planté discovered the first rechargeable lead-acid battery [6].

In 2021 battery technologies include only three major families in addition to lead-acid batteries (this latter remaining so far dominant in terms of Wh produced, but not any longer in value): alkaline nickel–cadmium (Ni–Cd), nickel-metal hydride (Ni-MH), and, since 1991, lithium-ion (Li-ion) batteries, which gradually dominate all others.

Two major breakthroughs allowed the large scale commercialization of Li-Ion batteries. In 1980, J. Goodenough *et al.*, discovered LiCoO_2 as a high-potential positive electrode material [7]. Shortly after, in 1983, R. Yazami and P. Touzain showed that lithium could intercalate reversibly in low-potential graphite [8]. This

made it possible to dispense with the use of metallic lithium, which posed serious safety issues. The combination of these two innovations allowed the development of Li-ion systems and their first commercialization, in 1991, by Sony.

Since 1991, the gravimetric energy density of Li-ion batteries has almost tripled from 100 Wh.kg⁻¹ to almost 270 Wh.kg⁻¹. At the same time, their cost has fallen very sharply, thanks in particular to the reduction in manufacturing costs. These improvements, coupled with initiatives of visionary industrial players such as Tesla/Panasonic in USA; LG in Korea; or BYD or CATL in China, made it possible for the electric vehicle market to take off.

Battery technologies are generally compared in terms of their energy density $(Wh.kg^{-1} \text{ or } Wh.L^{-1})$ and/or power density $(W.kg^{-1})$, especially for embedded systems. These performances are usually synthesized by plotting the power density as a function of the mass energy density in a so-called *Ragone* diagram as shown in figure 1.2. For each technology, these performances are described by a beam representing the possibility of modulating the performances according to whether one seeks to favour the energy density or the power density, *via*, for example, the use of thin electrodes to favour the latter. These notions are discussed in chapter 13, which describes the batteries manufacturing processes. It is also worth noting the presence of supercapacitors in this diagram, a technology based on capacitive phenomena and the use of electrochemical double layers. Supercapacitors are covered in chapters 9 and 10.

Of course, the performances of batteries are also measured during use, *i.e.* during charging and discharging cycles, for example. To characterize these performances, one usually reports the evolution of the voltage at the terminals of the cell as a

FIG. 1.2 – Ragone diagram of various commercialized battery technologies.

function of the discharged capacity, given in ampere hours (Ah) (1 Ah corresponds to the flow of a current of one ampere over a period of 1 h, *i.e.* 3600 Coulombs), and for various current values. An example is shown in figure 1.3 for the case of a cylindrical "18 650" cell (18 mm diameter and 65 mm height) for currents ranging from 0.2 times the nominal discharge rate (discharge in 5 h) to 2 times the nominal discharge rate (discharge in ½ h). The nominal discharge rate (or C-Rate) is defined as the current that allows the cell capacity to be totally discharged in 1 h. This then allows the use of C/n or nC ratings which represent slower rates, discharge in n h for C/n, or faster, discharge in 1/n h for nC.

In concrete terms, the Li-ion cell shown in the example of figure 1.3 has a nominal capacity of 2040 mAh, *i.e.* is able to withstand a nominal discharge rate C (noted "It" in the figure) and to deliver during one hour a discharge current of 2040 mA. A more rapid discharge rate at 4080 mA, or 2C, lasts almost 30 min, during which time nearly all of the rated capacity is recovered. At slower C/5, or 408 mA, the delivered capacity is close to 2200 mAh. The curves show a significant decrease in the mean voltage when the discharge rate is increased. This is due to an increase in ohmic and/or diffusive losses within the battery cell, which degrades the energy efficiency (energy losses between charge and discharge).

It should be noted that the accumulators (or unit cells) are the elementary cells constituting the batteries in which they are assembled in series and/or in parallel in order to increase the operating voltage (series connection) and/or the on-board capacity (parallel connection). An electronic management system called BMS (Battery Management System) always controls the battery operation and ensures safety. The pack constituting the cell/BMS assembly (see chapter 14) is referred to

FIG. 1.3 – Discharge curves of a Li-ion cell at various discharge rates: Panasonic CGR18650C [9].

Li-ion cells is focused on the development of All-Solid-State Li-ion Batteries and liquid electrolytes. He is managing several collaborative industrial and European projects.

Romain TESSARD has been a research engineer at the CEA for 10 years, after 10 years as an engineer and R&D project manager for consumer electronic products. He has specialized in the characterization and selection at cell level of storage devices, mainly lithium-ion cells, with a wide knowledge of suppliers and markets.