2 • POLLUTION DE L'AIR AMBIANT EXTÉRIEUR

La pollution de l'air ambiant extérieur dépend des sources d'émission locales mais aussi de la diffusion et du transport des polluants, conduisant à une distribution très irrégulière de ceux-ci. Les sources peuvent être naturelles ou anthropiques, ponctuelles ou diffuses, fixes ou mobiles.

La pollution est d'autant plus difficile à évaluer que les polluants émis directement par les sources et désignés comme « polluants primaires » sont transformés, selon leur stabilité chimique, par des réactions chimiques et photochimiques en d'autres espèces chimiques dites « polluants secondaires ». On doit ainsi prendre en compte la nature et la concentration des polluants primaires émis, leur diffusion, leurs transformations chimiques éventuelles et les retombées au sol parfois très loin des sources. La qualité de l'air extérieur qui assure la ventilation des locaux est très surveillée et fait l'objet d'une réglementation contraignante.

2.1 Sources et polluants

2.1.1 Polluants primaires

Les sources anthropiques c'est-à-dire dues aux activités humaines sont principalement :

- les installations fixes de combustion (centrales thermiques, chaudières et fours industriels, installations de chauffage urbains et domestiques)...;
- le trafic routier et aérien, source de pollution diffuse ;
- l'incinération des déchets ;
- les installations industrielles et artisanales (métallurgie, sidérurgie, raffineries, pétrochimie, cimenteries, chimie);
- l'agriculture et l'élevage.

Plusieurs substances émises par des sources naturelles peuvent s'ajouter ou réagir avec les polluants primaires émis par les sources anthropiques. En particulier ce sont :

- des composés du soufre dont le dioxyde de soufre rejetés par les volcans, les océans ou produits par les feux de forêt et la décomposition biologique;
- des oxydes d'azote émis par les volcans, les océans, la décomposition biologique et les éclairs;
- des particules en suspension (aérosols) émises par les volcans, les embruns marins, l'érosion éolienne, la pollinisation, les feux de forêt;
- des composés organiques comme les terpènes, l'isoprène, produits par la végétation ;
- des éléments radioactifs provenant de l'écorce terrestre dont le radon.

La liste détaillée mais non exhaustive des polluants émis par l'ensemble de ces sources est présentée dans le tableau 2.1. L'effet sur la santé de ces polluants retrouvés dans l'air intérieur sont décrits dans les chapitres 5, 6 et 7.

Tableau 2.1 – Principaux polluants atmosphériques, sources naturelles et anthropiques. (Sources : Centre Interprofessionnel Technique d'étude de la Pollution Atmosphérique – CITEPA)

Polluants	Sources naturelles	Sources anthropiques	
Composés minéraux			
Ammoniac NH₃	Sources biologiques dans le sol, dégradation des déchets organiques	Combustion du charbon, du fuel, traitement des déchets. Agriculture, élevage (70%), cultures (20%)	
Composés chlorofluorés		Réfrigérants, mousses, propulseurs d'aérosols	
Chlorure d'hydrogène HCl	Volcans, sources chaudes, dégradation du chlorure de méthyle CH ₃ Cl	Combustion du charbon, chimie, incinération d'ordures	
Dioxyde de soufre SO ₂	Volcans, océans, oxydation du sulfure d'hydrogène	Production d'électricité (23%), raffinage du pétrole (22%) ,résidentiel (8%), chimie (7,5%), industrie (6%)	
Fluorure d'hydrogène HF	Volcans, sources chaudes	Briqueteries, industries de céramique	
Monoxyde de carbone CO	Océans, feux de forêts, oxydation du méthane et d'hydrocarbures naturels (terpène), fermentation.	Combustions incomplètes hydrocarbures, fuel, bois, gaz, charbon), procédés industriels, métallurgie (29%), résidentiel (31%), transport routier (29%°)	
Oxydes d'azote NO _x	Volcans, orages, feux de forêts, microorganismes anaérobies	Installations de combustion, automobiles, poids lourds diesel	
Perfluoro carbures		Métallurgie (73%) aluminium, chimie (10%), biens d'équipement, matériaux de transport (7%)	
Protoxyde d'azote N ₂ O	Océans, dénitrification biologique dans le sol	Culture (67%), élevage (8,3%), chimie (9%), voitures (1,9%)	
Sulfure d'hydrogène H ₂ S	Fermentation anaérobie, volcans, sources chaudes	Raffinage du pétrole, cimenteries, gaz de cokeries, industries du papier	
Métaux lourds			
Cadmium Cd		Incinération des déchets, métallurgie (25%), matériaux de construction (25%), résidentiel (5%)	
Chrome Cr		Industries manufacturières (64%), résidentiel tertiaire (26%), transformation d'énergie (10%)	

Tableau 2.1 – Principaux polluants atmosphériques, sources naturelles et anthropiques. *(Suite)* (Sources : Centre Interprofessionnel Technique d'étude de la Pollution Atmosphérique – CITEPA)

Polluants	Sources naturelles	Sources anthropiques		
	Métaux lourds (suite)			
Cuivre Cu		Transport ferroviaire (34%), poids lourds, (16%), voitures (26%)		
Mercure Hg		Production d'électricité (36%), chimie (16%), traitement des déchets (16%), matériaux de construction (8,2%), transformation d'énergie (10%)		
Nickel Ni		Raffinage pétrole (27%), production d'électricité (23%), chimie (8,7%), agroalimentaire (8,2%), métallurgie (7,9%)		
Plomb Pb		Métallurgie (39%), matériaux de construction (22%), résidentiel (14%), transport aérien (13%), transformation d'énergie (7,6%)		
Zinc Zn		Industries manufacturières (71%), résidentiel, tertiaire (23%), transformation d'énergie (6%)		
Selenium Se		Industries manufacturières (84%), résidentiel, tertiaire (11%), transfert d'énergie (5%)		
Aérosols- poussières				
	Volcans, océans, érosion, éoliennes, pollinisation, feux de forêts, microorganismes	Industries, travaux, carrières, transports, centrales thermiques, chauffage, etc.		
	Composés organiques			
Composés organiques non méthaniques (COVNM)		Résidentiel (31%), culture (9,5%), construction (8,9%), industries manufacturières (7,8%), voitures à essence (6%)		
Composés organiques chlorés, chlorure de méthyle CH ₃ Cl	Combustions lentes, mers, algues	Industries du PVC		
Chlorure de méthyle (CH ₂ Cl ₂), méthylchloroforme (CH ₃ CCl ₃), trichloréthylène, tétrachloréthylène, tétrachlorure de carbone CCl ₄		Solvants (nettoyage, dégraissage)		
Chloroforme		Industries pharmaceutiques, solvant, blanchiment du bois, combustions		

Tableau 2.1 – Principaux polluants atmosphériques, sources naturelles et anthropiques. (*Suite*) (*Sources* : Centre Interprofessionnel Technique d'étude de la Pollution Atmosphérique – CITEPA)

Polluants	Sources naturelles	Sources anthropiques	
Composés organiques (suite)			
Composés organiques soufrés : méthyl mercaptan CH ₃ SH, sulfure de diméthyle CH ₃ SCH ₃	Sources biologiques anaérobies	Traitements de cadavres d'animaux, fumiers d'animaux, papeteries, pâtes à papier, raffineries de pétrole (CH ₃ SCH ₃)	
Hydrocarbures aromatiques polycycliques (HAP)		Combustion résidentielle (40%), industries (22%), transports (30%)	
Hydrofluorocarbures (HFC)		Industries chimiques (10%), secteur tertiaire, commercial (31%), voitures, agroalimentaire, expansion des mousses polyuréthanes (8%)	
Méthane CH ₄	Fermentations, émission des marécages, océans, gisements de gaz et de pétrole	Elevage (74%), combustion incomplète (déchets) (18%), résidentiel (3,7%)	
Polychloro biphényles (PCB)		Combustion résidentielle (39%), incinération des déchets (40%), chimie (15%)	
Hexachlorobezène (HCB)		Incinération (40%), combustion résidentielle (39%), chimie (15%)	
Dioxines, furanes		Industries manufacturières (12%), résidentiel combustion du bois (20%), incinération des déchets (65%)	
Hydrocarbures légers	Sources biologiques aérobies, gisements naturels de gaz et pétrole	Emissions des raffineries, des voitures	
Pesticides		Herbicides, insecticides	

2.1.2 Polluants secondaires issus des polluants primaires

De très nombreuses réactions chimiques avec des vitesses souvent très différentes ont lieu dans l'atmosphère. Elles sont généralement initiées par action de la lumière visible et des rayons ultraviolets sur des polluants primaires. Elles conduisent soit à des radicaux très réactifs soit à de nouvelles espèces énergétiques pouvant à leur tour être dissociées ou entrer en réactions.

Les ondes électromagnétiques peuvent être considérées comme un flux de grains d'énergie appelés photons. L'énergie des photons E dépend de la fréquence de l'onde, elle peut être calculée par l'équation suivante :

$$E(J) = h \times v$$
 [2.1]

h : constante de Plank = 6,625.10⁻³⁴ joules . seconde

v : fréquence de l'onde en s⁻¹