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INTRODUCTION
 
En économie de marché, les prix en régissant les échanges structurent l’allocation des ressources disponibles (biens consommables, facteurs de production, etc).
 
Une première formulation théorique des principes de l’échange avait été donnée par P. Boisguilbert puis A.Turgot au XVIIe et au XVIIIe siècle, proposant la définition d’un mécanisme d’équilibre entre les prix et les quantités offertes et demandées. Mais c’est seulement à partir du siècle dernier que L. Walras, puis F.Y. Edgeworth, A. Marshall et V. Pareto entreprendront une investigation systématique des fondements logiques d’un système d’échange. Certes, aux perspectives riches et ambitieuses des économistes « classiques », ils ont substitué des modèles stylisés, ne reflétant qu’à grands traits les réalités économiques ; mais, leur démarche pouvait se prévaloir de l’avantage évident d’un contrôle logico-mathématique du raisonnement.
 
Leurs travaux, constitutifs des théories de l’équilibre « partiel » (celui d’un marché) et de l’équilibre « général » (celui de l’ensemble des marchés), prolongés aujourd’hui par des recherches dont les modes de raisonnement ont été définis par G. Debreu et K. Arrow dans les années 1950, ont conduit à l’identification d’un concept d’équilibre renvoyant à un système de prix qui soit solution d’un problème d’offre et de demande, dont il convient alors de préciser les conditions d’existence et de stabilité. Plus avant, ils ont entendu s’enquérir des propriétés d’optimalité de l’allocation des ressources opérée par le jeu des mécanismes de prix.
 
 
Mais, une autre considération s’impose : les marchés sont aussi des réseaux d’informations, comme l’ont fait d’abord remarquer R. Radner ou J. Marschak. Dans cette perspective, les prix peuvent être perçus comme des « signaux » qui à la fois reflètent et révèlent les informations dont disposent les agents.
 
Cette observation est aujourd’hui essentielle en analyse de l’équilibre économique, décisive pour qui veut appréhender le sens même de ce concept. En effet, la théorie de l’équilibre général walrasien en modélisant le rôle allocationnel des prix excluait, en identifiant l’information nécessaire et suffisante à tous les agents pour prendre leurs décisions, tout transfert d’informations entre ceux-ci ; les décisions d’un consommateur, par exemple, ne relèveraient que de ses propres informations et d’une simple prise en compte du prix de marché. Cette supposition ne paraît plus admissible dès lors que le futur est incertain, que les informations des agents sont hétérogènes et que les anticipations affectent les échanges. Il devient inéluctable d’intégrer à l’analyse la diversité des informations des agents économiques, la dynamique de leurs anticipations, en bref, de raisonner sur des « structures d’informations ».
 
Les intentions de cet ouvrage s’inscrivent dans de telles perspectives. L’on s’intéressera d’abord à la formation des prix, en se rapportant à des structures de concurrence parfaite et imparfaite, aux relations contractuelles, aux marchés contingents présentés au travers des marchés d’options, selon des démarches microéconomiques. L’on traitera, corrélativement, des principes de l’allocation des ressources par le jeu des mécanismes de prix en insistant sur la question de son optimalité, actualisant ainsi le thème de la « main invisible ».
 
Mais, on ne cerne pas vraiment les modes de fonctionnement des marchés si l’on ne s’enquiert pas de l’aptitude des prix à révéler et diffuser les informations détenues par les agents. L’étude de ce rôle informationnel des prix constituera le propos d’une seconde partie de cet ouvrage. De ce point de vue, l’on s’est naturellement attaché aux 
prix anticipés, à leurs influences sur les prix courants et aux phénomènes spéculatifs, abordant des questions relatives à l’efficience des marchés financiers, aux bulles spéculatives et au rôle des marchés à terme.
 
Ainsi, l’on aura, à la fois, considéré des problèmes touchant à l’efficience allocationnelle et à l’efficience informationnelle des prix.

 
 
 


 


 
Chapitre I
 
LES PRIX EN CONCURRENCE PURE ET PARFAITE
 
Dans un premier temps, l’on considérera les principes des décisions d’activité d’une entreprise, puis l’on se penchera sur l’équilibre d’un marché en concurrence pure et parfaite. Les incidences de l’incertitude sur les choix de production seront ensuite examinées. Enfin, l’on s’attachera aux propriétés de l’allocation des ressources par des marchés en concurrence pure et parfaite, ce qui conduira à une réflexion sur l’idée de « main invisible ».
 
I. — Les conditions de production
 
Les conditions d’activité d’une entreprise, synthétisées par les concepts microéconomiques fondamentaux de « fonction de production », de « fonction d’offre » et de « fonction de coût » retiendront d’abord notre attention.
 
 

 
 
La fonction de production. — On considèrera une entreprise productrice d’un bien (son output) en ayant recours à n facteurs de production Xi (ou inputs) tels que les équipements, la main d’œuvre, etc. ; en notant, respectivement, y et (x1,...,xn) son niveau de production et les quantités utilisées des facteurs, l’on raisonnera sur l’ensemble des technologies pouvant être mises en œuvre, que l’on désignera comme son « ensemble de production », noté Y = {(y,x)/ avec x = (x1,..., xn) 1, identifié ainsi aux couples (y,x) techniquement envisageables1(graphique ci-dessous).
 
 
La notion de « fonction de production » désigne la relation associant à tout système x d’inputs la production maximum envisageable, que l’on notera y = f(x1,..., xn) =f(x). L’on appelle alors « isoquant » l’ensemble des vecteurs x qui engendrent un même output fixé [image: Illustration] (graphique ci-dessous). Une combinaison de production z =(y, x)∈ Y sera dite « efficiente » s’il n’existe pas d’autre élément de Y associant le même output à une quantité moindre d’inputs ou un plus grand output aux mêmes quantités d’inputs ; la fonction de production apparaît ainsi comme l’ensemble des vecteurs z efficients.
 
[image: Illustration]

 
Les raisonnements sont grandement facilités en supposant deux fois dérivable la fonction de production, 
ce qui permet d’examiner les effets de « petites » variations du recours aux facteurs de production. Pour désigner le surcroît de production induit par une augmentation infime de l’emploi de l’input j, qui représente le « produit marginal de l’input j », il est alors possible de se rapporter à la dérivée partielle de f par rapport à xj, soit (δf/δxj). On appelle « taux de substitution technique des inputs i et j », la quantité (positive) TST (i,j) = ( – dxj/dxi) = (δf/δxi)/(δf/δxj) qui représente le montant supplémentaire d’input xj auquel il faut avoir recours pour maintenir constant le niveau de production avec une moindre utilisation de l’input xi.
 
La différentielle de [image: Illustration], sera égale à (δf/δxj)dxj si dxi = 0 pour i ≠ j ; comme dy/dxj > 02 l’on aura δf/δxj > 0 Vj, c’est-à-dire la positivité des productivités marginales des facteurs de production. Poser dy =0 = (δf/δxi)dxi + (δf/δxj)xj explicite la définition du TST (i, j)
 
L’on envisagera que la fonction de production soit « concave »3(graphique précédent), par suite, la matrice de ses dérivées partielles secondes H = [δ2f/δxiδxj pour i, j = 1,..., n] sera « définie négative ». L’on aura 
alors, notamment,[image: Illustration], ce qui signifie que la productivité marginale d’un facteur sera décroissante à mesure que l’on fera plus appel à celui-ci sans modifier le recours aux autres inputs.
 
Les « rendements d’échelle » constituent une autre caractéristique essentielle d’une fonction de production, mesurant l’évolution de l’output consécutive à une variation équi-proportionnelle de tous les inputs. Il est commode de les définir par le degré d’homogénéité de la fonction de production : une fonction est « homogène de degré k » si f(λx1,..., λxn) = λkf(x1,..., xn) ∀ λ > 0 ; si tel est le cas de la fonction de production, les rendements d’échelle seront dits constants si k = 1, décroissants si k < 1 et croissants si k > 1. Par exemple, en rendements croissants doubler les quantités utilisées de tous les facteurs de production permettra de multiplier par plus de deux l’output4. Si f(x) est concave alors les rendements seront non croissants. Toutefois, il n’y a pas de raison pour que les rendements d’échelle soient globalement croissants, constants, ou décroissants ; il est souvent utile de se rapporter à une notion de rendements d’échelle « localement » croissants (resp. constants, décroissants) en x définis par f(λx) – λf(x) > 0 (resp. = 0, < 0) pour des valeurs de λ proches de 1.
 
Prenons l’exemple d’une fonction de production à deux inputs, [image: Illustration] appelée la fonction Cobb-Douglas ; si a + b = 1, elle est homogène de degré 1, donc à rendements constants ; elle est à rendements croissants si a + b > 1 et décroissants si a + b < 1. Les productivités marginales des deux inputs sont respectivement [image: Illustration] 
[image: Illustration] ; elles sont décroissantes si a, b < 1. On peut donc avoir à la fois des rendements croissants et des productivités marginales décroissantes si a, b ∈]0,5 ; 1[. Le TST est égal à (ax2 /bx1). Le hessien est défini négatif si a < 1 et a + b < 1.

 
La fonction d’offre. — L’on s’intéressera à une entreprise ne pouvant influencer ni le prix s’établissant sur le marché de son output ni ceux de ses inputs : si le prix du bien qu’elle produit et ceux des inputs, respectivement notés p et {q1,..., qn}, ne dépendent pas de ses décisions de production, on dit alors qu’elle opère en price taker. Il sera supposé encore qu’elle peut acheter et vendre, aux prix de marché, autant de ces biens qu’elle le désire. Quand ces deux conditions sont remplies, l’on considère qu’elle opère sur des marchés « concurrentiels ».
 
On lui attribuera un objectif économique de maximisa-n tion5 de ses profits [image: Illustration] l’annulation des dérivées de π par rapport aux xi (conditions de premier ordre) livre p(δf/δxi) = qi ∀i : les profits sont maximisés quand le produit marginal en valeur de chaque facteur est égal à son prix d’acquisition qi. La condition (suffisante) 
de second ordre suppose que la matrice hessienne H= [δ2f/δxiδxj ; pour i,j = soit définie négative, donc que les productivités marginales et les rendements soient décroissants au voisinage de l’équilibre. Il est exclu que cette optimisation corresponde à des rendements d’échelle localement croissants6.
 
Les conditions de premier ordre constituent un système d’équations dont les solutions [image: Illustration] définissent le recours optimal aux facteurs de production ; elles formulent les « fonctions de demande » d’inputs, [image: Illustration] pour i =1,..., n, correspondant à la maximisation des profits sur la base des prix de l’output et des inputs. Ces fonctions sont homogènes de degré 0, un doublement de tous les prix multipliant par deux les profits mais en laissant inchangées les conditions de premier ordre. En intégrant ces fonctions de demande [image: Illustration] à la fonction de production y = f(x), l’on déterminera le niveau optimal de production y *, en le présentant comme une fonction y(p,q) appelée la « fonction d’offre ». Celle-ci sera homogène de degré 0, puisque telles sont les fonctions [image: Illustration] : le niveau de production optimale ne dépendra que des prix relatifs7 (p/qi) et (qi/qj).
 
Revenons à l’exemple de la fonction Cobb-Douglas : la fonction de profit s’énonce [image: Illustration] et l’annulation des dérivées partielles [image: Illustration] [image: Illustration] donne les demandes optimales d’inputs [image: Illustration] et [image: Illustration], si 
a +b < 1 (condition de second ordre). La fonction d’offre est alors [image: Illustration].

 
Sur courte période, on peut envisager l’existence de contraintes touchant l’emploi d’au moins un des facteurs ; supposons, par exemple, que le recours au parc d’équipements, que désignerait l’input x1, ne puisse être modulé, soit [image: Illustration] alors les fonctions de demande d’inputs s’énonceront [image: Illustration] pour i = 2 à n.
 
 

 
 
L’analyse des coûts. — L’on supposera, à présent, que l’entreprise veuille atteindre un certain niveau de production [image: Illustration] et l’on recherchera les demandes d’inputs minimisant les coûts correspondants, ce qui permettra de disposer de la « fonction de coût ». Le problème est ainsi d’identifier les montants d’inputs (x1,..., xn) minimisant la dépense [image: Illustration] tout en permettant d’atteindre le niveau de production [image: Illustration] ; il se formule, [image: Illustration], en dénommant la fonction L le « lagrangien » et λ le « multiplicateur de Lagrange ».
 
Les conditions de premier ordre de minimisation de la dépense s’énoncent λ(δf/δxi) = qi pour i = 1,...,n et [image: Illustration]. Par suite, l’on aura qi/qj = [(δflδxi)/(δflbxj)] = – dxj/dxi pour i, j = 1...., n : le taux de substitution de l’input j à l’input i permettant de maintenir les coûts invariants (les conservant à leur minimum) doit être égal au taux de substitution technique TST(i,j). Ces conditions définissent les demandes optimales d’inputs conditionnelles au niveau de production y à atteindre, [image: Illustration] pour i = 1 à n ; ces fonctions sont homogènes de degré 0 par rapport à q, donc leurs déterminants sont en fait les prix relatifs des inputs (un doublement, par exemple, du prix de tous les inputs ne les modifierait pas). Graphiquement (pour n = 2), la tangence 
de la droite donnant le rapport des prix des facteurs (pente – q1/q2) avec l’isoquant de [image: Illustration] livrera [image: Illustration] et [image: Illustration].
 
[image: Illustration]

 
Le coût minimal permettant d’atteindre un niveau de production y est alors [image: Illustration], relation C (q, y) entre la dépense minimale, le prix des inputs et le niveau de production, appelée « fonction de coût ».
 

Revenons à la fonction Cobb-Douglas : la fonction de coût est solution d’une minimisation de q1x1 + q2 x2 sous la contrainte [image: Illustration] [image: Illustration], soit minimiser [image: Illustration].En annulant la dérivée de cette dernière expression par rapport à x1, l’on obtient la condition de premier ordre [image: Illustration] et donc la fonction de demande [image: Illustration] [image: Illustration] ; par suite, l’on a [image: Illustration] [image: Illustration], Ces fonctions sont manifestement homogènes de degré 0 ; elles dépendent non de q1 et q2 mais de q2/q1. On pourrait dire, à l’identique, que la fonction de coût est solution du programme [image: Illustration] et déterminer [image: Illustration] et [image: Illustration]. Cette fonction s’énonce [image: Illustration] [image: Illustration], ce que l’on notera, pour simplifier, [image: Illustration].



 
Une évolution du prix relatif de deux facteurs fera se modifier leurs demandes respectives ; l’on dispose d’une mesure de la substitution envisageable de deux inputs préservant la condition venant d’être établie {qi/qj = [(δf/δxi)/(δf/δxj)] = – dxj/dxi pour i,j = 1,...,n}, l’élasticité8de substitution des inputs i et j, qui se définit par δi,j = – dlog[xi(q,y)lxj(q,y)]dlog(qilqj), grandeur positive par construction.
 
L’on a δ1,2 = – [δ(x1 (q,y)/x2(q,y))/δ(q1/q2)][q1x2/q2x1] pour les facteurs x1 et x2 de la fonction Cobb-Douglas ; en posant pour simplifier A = 1, si l’on considère des rendements constants l’on aura alors à l’équilibre δ1,2 = 1 : on en déduit que la rémunération relative des facteurs n’est pas modifiée quand leurs prix relatifs, donc leurs demandes et leurs productivités marginales, évoluent.

 
La fonction de coût C(q,y) possède plusieurs propriétés fondamentales. Relativement au prix des inputs, elle est non décroissante (si q′ ≥ q alors C(q′, y) ≥ C(q, y)), homogène de degré 1 (pour η > 0, C(ηq,y) = ηC(q, y)) et concave (pour 1 ≥ μ≥ 0, C(μq + (1 – μ)q′, y) ≥ μC(q, y) + (1 – μ)C(q′, y)). Si la fonction de production est à rendements constants alors on voit que C(q, y) = yC(q, 1), c’est-à-dire que le coût minimum pour produire y unités d’output est y fois le coût minimum de production d’une unité d’output.
 
L’on raisonnera, à présent, sur le « coût de production moyen » Cm = C/y c’est-à-dire le coût par unité de bien produite et sur le « coût marginal » CM = δC/δy qui évalue la variation des coûts induite par la production d’une unité supplémentaire du bien. Le multiplicateur de Lagrange λ, que l’on avait rapporté aux conditions de premier ordre {λ(δf/δxi) = qi pour i = 1,..., n}, s’identifie au coût marginal ; en effet, différencier la relation définissant 
la fonction de coût, en maintenant qi constant, donne [image: Illustration].
 
Dans le cas de la fonction Cobb-Douglas, le coût moyen est [image: Illustration] et le coût marginal [image: Illustration] [image: Illustration] ; ils sont donc égaux si les rendements sont constants (a + b = 1).

 
En courte période, avec contrainte sur l’emploi de l’un des facteurs, par exemple [image: Illustration], les demandes d’inputs s’énonçant [image: Illustration] pour i = 2,...,n, la fonction de coût à court terme s’exprimera [image: Illustration], soit [image: Illustration] avec CF une constante représentative des coûts fixes induits par la rigidité du recours à x1.
 
Le coût de production moyen Cm = C/y et le coût marginal CM = δC/δy sont liés par la relation (dCm/dy) ≥ 0 (resp.< 0) implique CM ≥ Cm (resp. <), car [image: Illustration] : quand les coûts moyens baissent (resp. s’élèvent), le surcroît de coût induit par la production d’une unité supplémentaire d’output ne peut qu’être inférieur (resp. supérieur) au coût moyen prévalant antérieurement. Par suite, lorsqu’ils sont à leur minimum (s’ils ne s’élèvent ni baissent), ils doivent égaler le coût marginal (graphique ci-dessous).
 
 

 
 

 
 
Avec x1 fixé en courte période, il est clair que [image: Illustration], les coûts à court terme seront au moins aussi élevés que ceux de longue période, puisque alors seules les demandes [image: Illustration] de n – 1 facteurs sont optimales. Par ailleurs, du fait de la continuité de la fonction de demande de longue période [image: Illustration] du facteur x1 qui est fixé à court terme au niveau [image: Illustration], il existe une valeur [image: Illustration] de y telle que [image: Illustration] et donc [image: Illustration]. Ces deux relations sont sous-jacentes au « théorème de l’enveloppe », selon lequel le graphe de la courbe de coût à long terme est situé sous celui de chaque courbe de coût à court terme envisageable, et tangent à chacune d’elles (géométriquement, on dit qu’il en est une « enveloppe » ; voir le graphique ci-dessus où les courbes de court terme correspondent à diverses structures de production rigides en courte période). Ce résultat est aussi valable pour les coûts moyens.
 
 
[image: Illustration]

 
Disposant de la fonction de coût, on peut alors rechercher le niveau de production y maximisant les profits π = py – C(q, y). La condition de premier ordre s’énonce p = (dC/dy), soit l’égalité du prix au coût marginal, et celle du second ordre (d2C/dy2) ≥ 0, le coût marginal devant être croissant ou constant au voisinage du niveau de production maximisant les profits. On peut montrer9 que 
tel est le cas si le hessien H de la fonction de production est défini-négatif, donc si les productivités marginales et les rendements sont décroissants ; dans ce cas, la fonction de coût est convexe par rapport aux niveaux de production envisagés, soit [image: Illustration], 0, puisque λ est le coût marginal (on la savait déjà concave par rapport à q).
 
Avec le niveau de production optimal y *, l’on peut évaluer C(q, y) et dériver la fonction de profit π = py – C(q,y) = π(q,p). Naturellement, au regard des propriétés de la fonction de coût, elle est non-décroissante en p et non-croissante en q, homogène de degré 1 et convexe en p et q.
 
Pour la fonction Cobb-Douglas, le niveau de production y * maximisant les profits [image: Illustration] [image: Illustration], est obtenu par dérivation : l’on a [image: Illustration] [image: Illustration], fonction d’offre dépendant de (p,q), bien définie si a + b < 1.


 
II. — La concurrence pure et parfaite
 
On dit qu’un marché est en concurrence pure si vendeurs et acheteurs y sont présents en tel nombre qu’aucun d’eux ne puisse influencer la formation du prix, s’il est sans barrières à l’entrée et non asservi par des réglementations, enfin si les biens offerts par les différentes entreprises sont homogènes. On parlera, de surcroît, de concurrence parfaite si la mobilité et la disponibilité des facteurs de production aux prix en vigueur sont exemptes de contraintes et si les consommateurs, les détenteurs d’inputs et les producteurs ont une connaissance complète des prix et des coûts présents et futurs. Sous ces conditions, le prix du bien concerné est exclusivement déterminé par l’ajustement des offres et demandes ; chaque producteur est alors price-taker (preneur du prix de marché) et peut vendre une quantité aussi grande que souhaitée du bien qu’il offre à ce prix.
 
 
L’analyse précédente a donc largement exposé les principes des décisions de production et de demande de facteurs d’une firme en concurrence pure et parfaite. On a montré, notamment, qu’il était optimal pour elle de produire jusqu’à l’égalisation du coût marginal au prix de vente de son output (p = d C/dy) qui est pour elle une donnée exogène, dans la mesure où ses profits seront alors maximisés ; sa courbe d’offre s’identifie ainsi à celle de son coût marginal. La courbe de demande à laquelle une entreprise est confrontée sera horizontale dans le plan (y,p), puisque l’entreprise est price-taker.
 
La courbe d’offre de l’ensemble des entreprises correspond à l’agrégation des courbes de coûts marginaux. La courbe de demande à laquelle sont confrontés ces producteurs est une fonction décroissante du prix de marché. L’intersection de ces deux courbes déterminera le prix de vente de l’output (qu’aucune firme individuelle ne peut influencer).
 
A court terme, on a vu que chaque entreprise maximisera ses profits en portant sa production à un niveau auquel son coût marginal est croissant et égal au prix de marché p. Si le coût moyen est alors décroissant, il sera supérieur au coût marginal (d(C/y)/dy = (C′y – C)/y2 < 0 implique C/y > C′) et l’égalisation du coût marginal au prix induira des profits négatifs, π = py – C = C′y – C = y(C′ – C/y) < 0. En raisonnant sur une fonction de coût formulée C = CV(y) + CF, qui distingue les coûts variables CV (dépendant du niveau de production) des coûts fixes F, l’on peut voir que si p > C/y l’entreprise en produisant à son niveau optimal maximisera des profits qui seront positifs, tandis que si p ∈]CV/y, C/y[elle minimiserait ses pertes totales (CV/y étant le coût variable moyen). Si p < CV/y elle ne minimiserait ses pertes totales q’en fermant ses portes.
 
A long terme, tous les facteurs de production et tous les coûts sont variables ; par suite, une entreprise maintiendra ses activités (en choisissant la technologie de production 
la plus appropriée) seulement si ses recettes surpassent ses coûts. Son meilleur niveau de production correspondra à l’égalisation du prix de marché à son coût marginal de long terme, celui-ci devant être croissant. Si l’entreprise réalise alors des profits, de nouvelles firmes entreront dans sa branche de production jusqu’à ce que ceux-ci soient résorbés.
 
Si les prix des facteurs de production augmentent à mesure que davantage d’entreprises entrent dans la branche et que la production globale augmente, la branche de production sera dite à « coûts croissants » ; sa courbe d’offre est alors de pente positive, une production plus importante étant mise sur le marché uniquement à un prix plus élevé. A rebours, si les prix des facteurs diminuent à mesure que des entreprises entrent dans la branche et que la production globale augmente, la branche est alors à « coûts décroissants » et une production plus importante sera réalisée à des prix plus bas.

 
III. — Les comportements en incertitude
 
L’incertitude est une dimension essentielle des choix de production. Les coûts des inputs et le prix auquel elle pourra proposer son output ne sont, en général, pas déjà connus de l’entreprise lorsqu’elle doit prendre ses décisions d’offre ; elle peut aussi n’anticiper qu’imparfaitement la demande du marché. On peut encore concevoir que sa fonction de production, et donc celle de coût, soient affectées d’aléas, ou même qu’elle ne puisse être assurée de la quantité d’output qu’elle pourra vendre au prix de marché ou des quantités d’inputs qu’elle pourra acheter10 (si la concurrence n’est pas vraiment parfaite). D’une manière générale, nombre de propositions établies 
en information parfaite ne sont plus pertinentes en incertitude11.
 

L’on considérera ici qu’une entreprise doive déterminer son niveau de production y avant de savoir ce que sera le prix de marché p de son output, en envisageant qu’elle connaisse toutefois la distribution de probabilité f(p) de cette grandeur incertaine. Sa fonction de coût sera supposée de forme C(y) + CF, CF désignant les coûts fixes et C(y) les coûts variables, avec C(0) = 0 et C′(y) > 0. On lui attribuera un objectif de maximisation de son espérance d’utilité, avec une fonction d’utilité U(π) définie sur ses profits π, telle que U′(π) > 0. Si l’entreprise est réticente à l’égard du risque, soit U“(π) < 0, elle fixera son niveau de production de façon à maximiser l’utilité de ses profits espérés [image: Illustration][image: Illustration]. Les conditions de premier et de second ordre s’énoncent, en différenciant par rapport à y, E{U’(π)[p – C’(y)]} – 0 et E{U”(π)[p – C’(y)]2 – U’(π)C“(y)} < 0. On observe ainsi que C″(y) > 0 n’est pas indispensable à la satisfaction de la condition de second ordre, contrairement au cas d’information parfaite : un coût marginal décroissant peut être compatible avec la maximisation des profits.
 
On peut aussi établir qu’à l’optimum le coût marginal sera inférieur à l’espérance du prix de marché. En effet, on déduit de la condition de premier ordre p = C′(y), et il s’ensuit (l’entreprise connaissant l’espérance mathématique Ep du prix de son output et ayant fixé ex ante son niveau de production y, ces grandeurs ont statut de constantes) E{U’(π)[p – Ep]} = E{U’(π)}[C′(y) – Ep]. Par ailleurs, π(y) = py – C(y) – CF implique Eπ = (Ep)y – C(y) – CF, donc π – Eπ = (p – Ep)y. Comme y > 0, l’on aura π > Eπ (resp. =, <) si p > Ep(resp. =, <). Mais, U′(π) > 0 et U″(π) < 0, d’où il suit U′(π) > U′(Eπ) (resp. =, <) si p < Ep (resp. =, >). Ainsi, l’on voit que U′(π)(p – Ep) ≤ U’(Ep)(p – Ep) avec égalité pour p = Ep. Par suite, E[U’(π)(p – Ep)] < U′(Eπ)E(p – Ep) = 0 par définition de Ep, d’où l’on déduit E{U′(π)[p – Ep]} < 0, ce qui entraîne E{U′(π)}[C′(y) – Ep] < 0. Comme U′ > 0, l’on a ainsi prouvé 
que C′(y) < Ep. On peut ajouter que si l’incertitude était levée et si le prix aléatoire p était alors remplacé par Ep (supposition permettant de confronter les situations de certitude et d’incertitude), l’output optimal y serait bien sûr donné par C′(y) = Ep (avec C″(y) > 0) ; et il apparaît donc que le niveau de production en incertitude est moins (resp. égal, plus) élevé qu’en information parfaite pour la firme réticente (resp. neutre, favorable) à l’égard du risque.
 
La considération d’un cas particulier permettra de cerner l’impact de l’aversion pour le risque sur le niveau de production. Si la fonction d’utilité de la firme est à aversion absolue pour le risque constante, donc du type [image: Illustration] (avec le coefficient d’aversion pour le risque – U″(π)/U′(π) égal à α), et si p est distribué selon une loi normale alors la condition de premier ordre E{U’(π)[p – C′(y)]} = 0 se reformule12 C′ (y) = µ – yασ2. La production optimale apparaît ainsi comme une fonction décroissante de α et σ2. Ce cas de figure a permis à D.P. Baron13 d’établir la possibilité d’une courbe d’offre qui soit une fonction décroissante du prix espéré µ, en incertitude : en différenciant la condition de premier ordre l’on obtient δy/δμ =[1 – yα(δσ2/δµ)]/[C″ (y)+ ασ2], expression pouvant être négative (la fonction d’offre serait alors décroissante) si (δσ2/δμ) > 1/yα, c’est-à-dire si la variance du prix est d’autant plus élevée que l’espérance du prix s’élève14.
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