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Préface

Comme le rappelle cet ouvrage, la pratique de l’automatique remonte à l’Antiquité. Héri-
tière des modèles de la physique, s’appuyant sur les applications des mathématiques et de
l’informatique, l’automatique a progressivement étendu ses méthodes à un grand nombre
de champs disciplinaires. Elle est devenue progressivement une partie intégrante et incon-
tournable des sciences de l’ingénieur. Mais peut-on parler de discipline à son sujet tant son
champ d’application est vaste et varié (méthodes d’optimisation, commande des machines,
diagnostic...) ? Même l’analyse financière ou la biologie peuvent recourir à ses méthodes ou
contribuer à enrichir ses modèles.

Le XXe siècle nous a éloignés de la croyance naïve en la toute puissance de la mécanique
rationnelle et de quelques lois physiques simples et fondamentales dans la modélisation du
monde naturel ou créé par l’Homme. C’est justement la complexité croissante des modèles
et leur caractère interdisciplinaire qui placent l’automatique dans une position centrale.

La complexité des problèmes auxquels l’automatique est confrontée rend d’autant plus
ardue la tâche de ceux qui veulent s’initier à ses modèles et méthodes. Même quand il veut
approfondir les questions, un ouvrage de vulgarisation ne peut que survoler les problèmes.
À l’inverse, un ouvrage spécialisé n’abordera qu’un champ restreint laissant le lecteur dans
l’ignorance de la richesse des ressources offertes par l’automatique. Une encyclopédie peut
surmonter ce type de difficulté mais au prix d’un alourdissement considérable de l’ouvrage
risquant de provoquer la lassitude du lecteur. En fin de compte elle devra, elle aussi, renvoyer
à des ouvrages spécialisés.

En évitant ces écueils, le présent ouvrage réalise une synthèse originale entre initiation et
formation. Il propose au lecteur dans presque chaque champ de l’automatique une initiation
solide qui procure une culture de base indispensable à une approche ouverte des problèmes
auxquels l’ingénieur peut être confronté. La volonté de limiter le volume à un seul tome a
conduit à exclure provisoirement l’informatique industrielle. Le lecteur intéressé pourra se
reporter aux ouvrages spécialisés sur le temps réel, les réseaux programmables, les automates
industriels...

La présentation des modèles part des applications et justifie pleinement l’effort d’abs-
traction nécessaire. La lecture de l’ouvrage n’est pas nécessairement linéaire. Nul doute
qu’une telle approche donne au lecteur le goût de poursuivre et d’approfondir le champ qui
l’intéresse. Une bibliographie récente le guide dans cette démarche. Une boîte à outils placée
en fin d’ouvrage prend en compte la diversité des parcours de formation et permet au lecteur
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VI Préface

de se remettre en mémoire quelques éléments de calcul matriciel, d’algèbre de Boole ou de
théorie des graphes.

Vivant, évolutif, cet ouvrage rénove la notion traditionnelle d’ouvrage de référence. L’ex-
trême richesse des thèmes traités donne au lecteur une représentation saisissante des outils
mis à la disposition des ingénieurs pour résoudre des problèmes industriels de plus en plus
complexes.

Le développement de la science et de la technologie, la complexité des problèmes abordés
rendent impossible la concentration de compétences diversifiées et de haut niveau sur un
tout petit nombre d’individus. L’évolution très rapide des connaissances et des méthodes
fait que le temps n’est plus à la rédaction par un ou deux auteurs d’ouvrages sur le large
champ de connaissances des sciences de l’ingénieur. C’est tout le mérite des enseignants de
l’ENSEM (École Nationale Supérieure d’Électricité et de Mécanique de Nancy) d’avoir su
mettre en place dans la durée un travail collaboratif exemplaire par sa qualité et le nombre
des intervenants. Leur grande expérience pédagogique en école d’ingénieurs leur a permis
de proposer une initiation aux difficultés graduées allant du concret vers l’abstrait.

La visée pédagogique de l’ouvrage le destine aux étudiants en école d’ingénieurs, aux
étudiants de l’enseignement supérieur en transition vers les carrières d’ingénieurs, à tous
ceux qui, engagés dans la vie active, sont amenés par la nature de leurs travaux ou la nécessité
d’une évolution de carrière à enrichir leurs compétences en automatique. Les applications
étant au cœur de l’ouvrage, les étudiants titulaires d’un BTS ou DUT et envisageant une
poursuite d’études peuvent tester leur appétence pour les domaines abordés grâce à une
transition progressive vers l’abstraction.

Les carrières de l’enseignement ne doivent pas non plus être oubliées : un candidat à
l’agrégation de Physique Appliquée ou de Génie Électrique y trouvera l’occasion d’enrichir
sa vision d’un champ disciplinaire. Un enseignant de classes préparatoires y puisera de
précieux renseignements sur les contenus de formation actuels en école d’ingénieurs et les
compétences intellectuelles auxquelles il doit préparer ses étudiants. Cet ouvrage est aussi un
excellent moyen pour un enseignant en BTS Contrôle Industriel et Régulation automatique
de parfaire ou d’actualiser ses connaissances.

Pierre MALLÉUS

Inspecteur Général de l’Education Nationale
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Partie I

Les Modèles (Structure et Analyse)



“doc” (Col. : Science Sup 17x24) — 2016/11/18 — 16:17 — page 2 — #14
�

�

�

�

�

�

�

�



“doc” (Col. : Science Sup 17x24) — 2016/11/18 — 16:17 — page 3 — #15
�

�

�

�

�

�

�

�

Chapitre 1

Introduction

L’automatique s’intéresse aux systèmes. Constitués d’ensembles naturels (bancs de harengs)
ou artificiels (avions), les systèmes évoluent au cours du temps en fonction de sollicita-
tions extérieures. Ces sollicitations sont appelées entrées. Lorsque ces entrées peuvent être
créées pour piloter le système, on les appelle commandes ou entrées de commande ou encore
entrées, (bruit pour diriger le banc de harengs, angle de la gouverne de profondeur de l’avion),
lorsque ces entrées sont indépendantes de la volonté de l’automaticien on les appelle per-
turbations (présence d’un prédateur, trou d’air), les informations disponibles sur le système
sont appelées sorties (information sonar, angle de piqué), figure (1.1). Le rôle de l’automa-
ticien est de concevoir le contrôle des systèmes. Sous ce nom très général, on trouve des
actions très différentes : maintien de l’avion en vol horizontal à vitesse constante (action de
régulation), orientation du banc de harengs vers les filets de pêche (action de pilotage ou de
commande), calcul de la trajectoire que doit suivre l’avion pour économiser le carburant tout
en arrivant à l’heure (action de planification, d’optimisation), évaluation de la pression dans
une canalisation en l’absence de capteur (action d’observation), dire que le fonctionnement
du réacteur est parfait ou au contraire annoncer le fonctionnement défectueux d’un organe
(action de diagnostic ou de surveillance). Pour mener à bien ces différentes tâches, on utilise
les informations fournies par les sorties et on élabore les commandes si l’action l’exige.

perturbations

sortiescommandes

SYSTÈME

Figure 1.1 Un système et ses liaisons avec l’extérieur.
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4 1 • Introduction

On comprend aisément que la connaissance des sorties ne permet que très rarement d’aboutir.
Il est nécessaire de posséder des informations sur le comportement du système sous l’in-
fluence des commandes, des perturbations, du temps, et comment cette évolution se traduit
au niveau des sorties. L’ensemble de ces informations constitue le modèle.

1.1 LA NOTION DE MODÈLE

Définition 1.1 (modèle) Le modèle est l’ensemble des informations qui permettent de calcu-
ler l’évolution d’un système en fonction des entrées qui lui sont appliquées.

Cette définition très générale appelle quelques commentaires :

• les modèles peuvent être de nature très variées : équations, tables, cartes, modèle lin-
guistique.
Un modèle simple pour réguler la température :
Parmi les régulations que nous avons tous rencontrées figure sûrement celle de la
température d’une pièce. La partie visible est le thermostat sur lequel on affiche la
température désirée. Les modèles de thermostats les plus simples jouent à la fois les
rôles de capteur et de régulateur. Pendant longtemps un thermostat a été constitué d’un
système à bilame qui ouvrait un circuit électrique quand la chaleur atteignait un certain
stade et fermait celui-ci dès que l’on descendait en dessous de cette même température.
Cette régulation est fondée sur un modèle élémentaire de la température d’une pièce : si
on chauffe, la température augmente, si on ne chauffe pas la température diminue !

• les modèles ne prétendent pas être une vérité (cf. § 1.1.1) mais un outil de représentation
plus ou moins imparfait. La confusion est entretenue par l’usage. En effet, bien que le
modèle ne soit pas le système, on utilise souvent le mot « système » au lieu du mot
« modèle » pour parler d’une classe particulière : « système linéaire » (qui n’existent
pas dans la nature) au lieu de « système à modèle linéaire ».

• un même système peut être représenté par des modèles de natures différentes.
• un modèle n’a de sens véritable que par l’utilisation que l’on en fait. Un « bon modèle »

est celui qui est le mieux adapté à son utilisation.
• un modèle a en général un domaine de validité, en conséquence plusieurs modèles

pourront être nécessaires pour décrire un fonctionnement.
• la simulation d’un système est la résolution de son modèle.
• l’identification est la technique utilisée pour rechercher les valeurs des paramètres d’un

modèle.

1.1.1 Lois et Modèles

Le problème n’est pas simple. Il suffit de lire la première ligne de mots clés de la section 2
du CNRS qui s’intitulait « Théories physiques : méthodes, modèles et applications » pour
trouver : « Lois et interactions fondamentales ». Pour une discussion sur les « lois physiques »
on pourra se reporter au livre de Christian Magnan « La nature sans foi ni loi » et au condensé :
http://www.dstu.univ-montp2.fr/GRAAL/perso/magnan/Nature209.html. Pour
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1.1 La notion de modèle 5

une discussion sur la nécessité des modèles, citons un extrait du dossier : « Les modèles de
l’Univers » http://www.astrosurf.org/lombry/cosmos-modelesunivers.html du
projet LUXORION : « En bousculant la symbolique Kantienne, les chercheurs qui désiraient
étudier l’Univers, déterminer les lois qui le gouvernent, expliquer la formation et l’évolution
des galaxies, ont dû imaginer des « modèles » qui le représentaient, modèles hypothétiques
qui englobaient toutes les propriétés connues de l’Univers. Ces modèles sont des conceptions
abstraites, mathématiques, où les sensations sont absentes. Elles n’ont rien à voir avec la
réalité... »

1.1.2 Comment classer les modèles ?

La définition (1.1) peut s’appliquer à des quantités de modèle de nature et de forme différentes.
On imagine bien que les méthodes qui seront développées pour concevoir et réaliser le
contrôle vont dépendre de ces modèles. Il est donc intéressant de savoir si une classification
peut aider dans la recherche d’une méthode adaptée. Des critères de classement divers ont
été énoncés. Considérons en quelques-uns :

Soyez vigilant : Les variables ne sont pas des constantes, ce sont des fonctions du
temps (normal si on veut qu’elles varient !). Il faut distinguer la variable x de la valeur
x(t) qu’elle prend à un instant donné.

1. Nature des variables qui interviennent pour décrire le fonctionnement du système, ses
entrées et ses sorties :

• variables réelles (R, Rn) : systèmes continus.
• variables logiques {0; 1}n : systèmes séquentiels ou à événements discrets.
• variables réelles et variables logiques : systèmes hybrides.
• variables aléatoires : systèmes stochastiques.

2. Nature de la variable temps :

• variable réelle : R : systèmes à temps continu.
• variable discrète : N : systèmes à temps discret, systèmes échantillonnés.

3. Nature des équations :

• équations différentielles : systèmes différentiels, systèmes à constantes localisées.
• équations aux dérivées partielles : systèmes à constantes réparties.
• équations aux différences : systèmes discrets.
• équations linéaires : systèmes linéaires.
• équations non linéaires : systèmes non linéaires.

4. Manière d’obtenir le modèle :

• à partir de lois physiques : modèle de connaissance.
• a priori (on ne se préoccupe pas de la réalité physique du système, mais on cherche

la représentation qui nous convient le mieux pour décrire le phénomène) : modèle de
représentation.©
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6 1 • Introduction

5. Nature des informations fournies par le modèle :

• information sur la relation entre les entrées et les sorties : modèle entrée-sortie.

• information sur les variables internes (pas forcément mesurables) : modèle d’état.

Vous retrouvez ces classes de modèles en titre de livre ou en tête de chapitre comme
dans cet ouvrage, en tout cas comme mots-clés en automatique. Comme ces classes sont
faites sur des critères différents, rien n’empêche d’en associer plusieurs : systèmes linéaires
échantillonnés. La conception du contrôle est presque toujours faite en utilisant un modèle,
il faudra donc s’assurer, de préférence avant de mettre en route, que ce contrôle fonction-
nera encore correctement sur le système dont le comportement n’est pas exactement celui
prévu par le modèle. C’est le problème de la robustesse qui doit être un souci constant de
l’automaticien. Certaines conceptions, très performantes sur le papier, ont connu des échecs
retentissants par défaut de robustesse.

1.2 LES SYSTÈMES DYNAMIQUES

1.2.1 Définitions

Malgré la diversité des modèles, on s’aperçoit assez rapidement d’analogies de comportement
entre des systèmes de natures très différentes : systèmes à événements discrets et systèmes
continus par exemple. Existe-t-il une théorie générale ? Nous n’avons pas la réponse à cette
question, mais une notion assez générale permet de réunir des modèles très différents et de
découvrir que la même méthode (la programmation dynamique) peut s’appliquer aussi bien
à la recherche d’un chemin dans un graphe que dans le problème de la commande optimale
de systèmes continus. C’est la notion de systèmes dynamiques.

Cette notion est malheureusement très souvent donnée de manière très restrictive (par les
mécaniciens) et se limite aux systèmes différentiels, lui faisant perdre ainsi l’essentiel de son
intérêt.

La notion de système dynamique repose sur la notion d’état. On fait l’hypothèse qu’il
existe un ensemble de variables dont la connaissance à un instant donné permet le calcul
de l’évolution future, si on connaît les entrées. Cette notion est naturelle pour les modèles
différentiels ; on sait que la solution d’une équation différentielle d’ordre n dépend de n
conditions initiales. Lorsque ces conditions initiales sont connues, la solution de l’équation
différentielle est complètement déterminée. Elle est aussi valable pour bien d’autres systèmes
dont nous donnerons quelques exemples. Elle n’exclut ni les systèmes chaotiques, ni les
systèmes stochastiques.

Remarque : Le chaos est cartésien. Un système chaotique est un système dynamique
régi par des équations différentielles dont les solutions sont extrêmement sensibles
aux variations des conditions initiales, au point qu’elles en deviennent imprévisibles.

On appellera X , l’ensemble des valeurs prises par ces variables, cet ensemble peut être
fini :{0; 1} pour des variables booléennes, infini : intervalle de R, de dimension finie : Rn et
même de dimension infinie.



“doc” (Col. : Science Sup 17x24) — 2016/11/18 — 16:17 — page 7 — #19
�

�

�

�

�

�

�

�

1.2 Les systèmes dynamiques 7

Il faut aussi :

• préciser l’ensemble des instants pendant lesquels on s’intéresse au système. C’est un
ensemble ordonné de réels que l’on notera T . Cela signifie que lorsqu’on a deux instants
t1 et t2, on est capable de dire lequel suit ou précède l’autre.

• indiquer les valeurs des entrées du système, on notera U l’ensemble qui les contient ;
exemple : l’intervalle [−10 volts, +10 volts] pour une tension d’entrée.

• définir les entrées admissibles groupées dans l’ensemble noté V. Ce sont les fonctions
de T dans U acceptables pour le système ; exemple : les fonctions constantes sur les
intervalles [kTe, (k + 1)Te[ pour une régulation numérique de période Te.

• définir les valeurs des sorties : ensemble Y .
• définir les fonctions de sorties g(x , t , u) : c’est-à-dire comment calculer les sorties avec

l’état, le temps et la commande.
• exprimer la phrase « on peut calculer l’évolution future... ». C’est la clé du système

dynamique : il est caractérisé par sa fonction de transition d’état w(t , t0, x(t0), v), fonc-
tion qui fournit la valeur de l’état à tout instant t qui suit un instant t0 pour lequel on
connaît la valeur de l’état x(t0) et la commande v appliquée sur l’intervalle [t0,t]. Cette
fonction ne peut pas toujours être écrite de manière simple : on ne sait pas, en général,
écrire analytiquement la solution d’une équation différentielle non linéaire, mais on sait
que moyennant quelques hypothèses, cette solution existe et est unique pour des condi-
tions initiales données. On remarque que seules les valeurs de l’entrée entre t0 et t ont
une importance ; il est inutile de connaître ces valeurs avant t0 (notion d’état), ni après
t (notion de causalité). L’ensemble des valeurs {t , w(t , ., ., .)} constitue un ensemble
appelé trajectoire du système.

1.2.2 Quelques exemples

Selon les ensembles que nous venons de définir, on obtient différents types de modèles

Ensembles Systèmes différentiels Systèmes séquentiels Systèmes échantillonnés

T R N N

X R
n {0, 1}n

R
n

U R
m {0, 1}m

R
m

V R → R
m

N → {0, 1}m suites : N → R
m

Y R
q {0, 1}q

R
q

auxquels on peut apporter quelques précisions :
Système à temps continu T = R
Système à temps discret T = N
Système de dimension finie X est un espace de dimension finie
Systèmes à états finis X est fini
Système fini X , U , Y , sont des ensembles finis

Le système dynamique S est dit libre si V a un seul élément.
Nous allons illustrer ces notions par quelques exemples concrets très simples :©
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8 1 • Introduction

a) Systèmes différentiels

D C1 1 D C2 2

H

DC

Figure 1.2 Schéma d’un mélangeur idéalisé.

L’évolution des systèmes décrits par une équa-
tion différentielle est complètement définie par un
nombre de variables égal à l’ordre de l’équation
différentielle. On dit que la solution dépend de n
constantes d’intégration. Nous prendrons comme
exemple un dispositif classique qui nous servira
pour illustrer les notions que nous présenterons
aux chapitres 1 et 2.

Il s’agit d’un mélangeur parfait illustré par la
figure (1.2) : on suppose que le mélange des pro-
duits s’effectue de manière instantanée et que la
concentration C du produit dissout dans le bac est
homogène. L’objectif du contrôle est de régler le
niveau H et la concentration C du soluté. Le bac
est cylindrique de section S. Il est alimenté par deux sources de concentration C1 et C2

dont on contrôle les débits D1 et D2 grâce à deux vannes. On étudiera deux modes de
fonctionnement :

Mode 1 : V1. On admettra que le débit de sortie est D(t) = k
√

H (t).
Mode 2 : V2. On considère que le débit de sortie est une perturbation.
Pour V1 les entrées de commande sont D1 et D2 (ouverture des vannes, ou commande des

vannes...) et les sorties sont : H et C .
Pour V2 les entrées de commande sont D1 et D2, l’entrée de perturbation est D et les

sorties sont H et C .

On obtient aisément les équations de ce système en écrivant les deux équations de conser-
vation de la masse :

• conservation de la masse totale

S
d H
dt

= D1 + D2 − D (1.1)

• conservation de la masse du produit dissout
d(SHC)

dt
= SH

dC
dt

+ SC
d H
dt

= C1 D1 + C2 D2 − C D (1.2)

ou encore en remplaçant dans (1.2)
d H
dt

par sa valeur tirée de (1.1) :

SH
dC
dt

= C1 D1 + C2 D2 − C D1 − C D2 (1.3)

Ces équations nous indiquent que deux variables sont nécessaires et suffisantes pour calculer
l’évolution des sorties (les entrées sont supposées connues). Donc l’espace d’état est R2 et
deux variables d’état naturelles sont H et C .

De nombreux systèmes physiques sont modélisés par des modèles différentiels. Des
techniques fondées sur les échanges d’énergie permettent de construire les modèles de
systèmes physiques complexes constitués de sous systèmes interconnectés (chapitre 8)
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b) Systèmes à temps discret

Considérons un compte d’épargne. On supposera que la période de calcul est la quinzaine et
que le taux de rapport par quinzaine est fixe soit a.

Mn = Mn−1(1 + a) + sn (1.4)

À la quinzaine numéro n, on est donc capable de calculer le montant disponible sur le
compte (Mn), si on connaît la somme initiale (M0) à la quinzaine 0 (date d’ouverture du
compte) et la suite des sommes déposées, s1, s2, . . . , sn.

T = N est l’ensemble des numéros de quinzaines.
si sont les valeurs de l’entrée U = Z.

V est l’ensemble des suites s : N → Z.

On voit sur l’équation (1.4) que pour calculer la valeur du compte à une date donnée il
faut connaître cette valeur à la quinzaine précédente. Cette valeur est nécessaire et suffisante.
L’espace d’état est de dimension 1, X = Z.

Lorsque la commande d’un système est réalisée par ordinateur (figure 1.3), les com-
mandes élaborées par un algorithme sont appliquées par l’intermédiaire d’un convertisseur
numérique-analogique et sont maintenues constantes pendant la période d’échantillonnage T .
Les fonctions u(.) ont une forme particulière : fonctions en escalier, constantes sur l’intervalle
d’échantillonnage.

u(t) = uk ; ∀t ∈ [kT , (k + 1)T ] (1.5)

SYSTÈMESYSTÈMEALGORITHME

Consignes

un

S = s nTn ( ) Sorties ( )s t

u t( )Convertisseur
numérique
Analogique

Convertisseur
numérique
Analogique

Figure 1.3 Schéma d’une régulation numérique.

L’état du système et les sorties sont des variables continues, mais au niveau de l’algorithme
on ne manipule que des suites. On utilisera alors une équation d’état discrète faisant intervenir
les valeurs de l’état aux instants d’échantillonnage xn = x(nT ). Elle prendra la forme (1.6) :

xn+1 = f (xn, un) (1.6)
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10 1 • Introduction

c) Systèmes à événements discrets

Figure 1.4 Détecteur de sens
de rotation.

Pour contrôler le patinage d’une roue ou pour commander le
mécanisme d’entraînement d’une bande magnétique il est indis-
pensable de connaître le sens du mouvement. Ceci se réalise
de manière très simple, de la façon suivante : un disque dont
une moitié est opaque (figure 1.4), est solidaire de l’arbre du
moteur d’entraînement et tourne devant deux cellules photo-
électriques c1 et c2. Ces cellules seront éclairées ou non selon
qu’elles sont devant la partie transparente ou la partie opaque
du disque. Quand elles sont éclairées ci = 1 et 0 sinon.

Il est évident que la seule connaissance des états des deux
cellules, éclairées ou non, ne suffit pas à déterminer le sens de
rotation. La séquence des signaux intervient.

T = R

Les entrées sont c1 et c2, ces variables sont binaires et ne prennent que deux valeurs :
éclairées ou non éclairées.

V = {R → [0; 1]2}
La sortie S est le sens de rotation. On ne pourra savoir le nombre de variables d’état

qu’après avoir fait la synthèse de l’automate qui détermine le sens de rotation.
Le système comporte 4 états par sens de rotation. On montre que deux variables d’état

(x1,x2) suffisent pour décrire l’évolution du système. Les futures valeurs (x+
1 , x+

2 ) prises par
l’état quand les entrées changent, sont exprimées en fonction des valeurs, à l’instant présent,
de ces mêmes variables d’état et des entrées. La sortie S à l’instant présent est donnée par
l’état et les entrées, à l’instant présent. Les équations du système sont :

x+
1 = c2x1 + c1c2 + c1x1

x+
2 = c1x2 + c1c2 + c2x2

(1.7)

S = x1x2c1 + x1x2c2 + x1x2c1 + x1x2c2 (1.8)

d) Systèmes Dynamiques Hybrides

La description du fonctionnement de certains systèmes nécessite l’utilisation de variables
continues et de variables booléennes. Ces systèmes sont appelés systèmes dynamiques
hybrides. On les rencontre dans tous les secteurs industriels. Donnons un exemple élémen-
taire.

On considère la commande du remplissage d’un réservoir (figure 1.5). Le débit d’entrée
de est commandé par la vanne V de type tout ou rien.

Le débit de sortie ds est inconnu, il dépend des utilisateurs. On supposera : ds < de.
La commande se fait de la manière suivante :

• la vanne V est fermée lorsque la hauteur d’eau dans le réservoir atteint le niveau haut
Nh , détecté par le capteur Ch .

• la vanne est ouverte lorsque le niveau atteint son seuil bas Nb, détecté par le capteur Cb.
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V : état de la vanne

Nh : niveau haut

Nb : niveau bas

ds

de

h

Figure 1.5 Commande de remplissage d’un réservoir.

Deux types d’équations décrivent le système :
1) Les équations de la partie continue (loi de conservation de la masse) :

S
dh
dt

= V de − ds (1.9)

où V = 0 si la vanne est fermée et V = 1 si la vanne est ouverte.
2) Les équations Booléennes de la partie discrète :

V + = Cb + C̄h V (1.10)

avec
Cb = 1 si h � Nb Ch = 1 si h � Nh (1.11)

C’est l’ensemble des équations (1.9, 1.10) et des conditions de transition des variables Cb

et Ch (1.11) qui définit le fonctionnement du système et permet de simuler son évolution.
T = R
La sortie est h. Les entrées sont de entrée réelle de commande, ds entrée réelle de pertur-

bation. L’état contient des variables binaires : Cb et Ch , et une variable réelle : h.
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Chapitre 2

Les modèles d’état

2.1 INTRODUCTION

La notion de systèmes dynamiques nous montre que la modélisation la plus riche est celle qui
utilise la notion d’état puisqu’elle représente un ensemble de variables a priori plus grand que
celui constitué par les entrées et les sorties. Nous commencerons donc par étudier les modèles
qui l’utilisent et que l’on nomme classiquement : « modèles d’état » en opposition avec les
modèles « entrées-sorties » qui peuvent paraître plus naturels puisqu’ils ne concernent que
les variables « visibles » de l’extérieur. Nous verrons que s’il est toujours possible de trouver
un modèle « entrées-sorties » à partir d’un modèle d’état, la réciproque n’est pas toujours
vraie et nécessite des hypothèses supplémentaires.

Nous commencerons par les modèles linéaires, non pas parce que ce sont les plus simples,
mais parce qu’ils permettent d’introduire de nombreuses notions indispensables à l’automa-
tique et que bien souvent leur utilisation pour concevoir le contrôle est suffisante. On utilise
très souvent un modèle obtenu par linéarisation d’un modèle non linéaire, autour d’un point
d’équilibre ou autour d’une trajectoire (chapitre 4). C’est en tout cas, et à juste raison, la
démarche normale de l’ingénieur avant de mettre en oeuvre les techniques non linéaires.
Nous traiterons essentiellement les systèmes linéaires à paramètres constants. En effet, même
si certaines propriétés restent vraies dans le cas où les paramètres varieraient en fonction du
temps, les résultats pratiques sont peu nombreux. Quant aux systèmes dits « à paramètres
variants », leurs méthodes d’étude relèvent clairement des méthodes non linéaires. Il reste à
choisir entre les modèles à temps continu et les modèles à temps discret. Il y a des arguments
en faveur des uns ou des autres.

• Si le temps est continu les systèmes à contrôler ne le sont pas forcément (cf. le compte
d’épargne) et la vision que l’on en a actuellement avec les commandes numériques est
clairement à temps discret.

• Bien qu’elles soient plus étudiées dans les cours de mathématiques, les équations diffé-
rentielles ne sont pas plus simples que les équations de récurrence.
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2.2 Les modèles LTI 13

• Il est vrai que les performances, en particulier les réponses temporelles, sont plus simples
à interpréter en temps continu.

• Les démonstrations sont plus simples en temps discret, car il suffit en général de compter
les équations.

Il serait préférable de commencer par les modèles à temps discret, ne serait-ce que pour
habituer tout de suite les lecteurs à travailler avec les équations de récurrence, car ce sont
elles qui seront programmées in fine pour réaliser le contrôle. Cependant, pour garder le lien
avec les équations différentielles qui sont bien connues des étudiants, tout en simplifiant les
démonstrations, les deux études seront menées en parallèle.

2.2 LES MODÈLES LTI

Les systèmes dont le fonctionnement est décrit par des équations différentielles ou des équa-
tions de récurrence linéaires à coefficients constants sont appelés communément « systèmes
LTI » pour systèmes Linéaires à Temps Invariant ou Linear Time Invariant Systems. Les
notions structurelles fondamentales pour le contrôle seront introduites sur ces modèles : la
stabilité, la commandabilité et l’observabilité. Lorsque ces propriétés ne sont pas vérifiées,
la première préoccupation de l’automaticien est soit de les obtenir, soit d’évaluer avec quel
niveau de dégradation un contrôle peut encore être fait.

2.2.1 Forme canonique

Pour de nombreux systèmes physiques, l’écriture des équations en utilisant des variables
d’état est naturelle et couramment employée. Lorsqu’on écrit les équations qui représentent le
fonctionnement d’un moteur à courant continu, on écrit l’équation électrique (L, R, i , U , k, v

sont respectivement l’inductance, la résistance et le courant d’induit, la tension d’alimenta-
tion, le coefficient de force contre-électromotrice et la vitesse de rotation du rotor)

L((di)/(dt)) = U − Ri − kv

et l’équation mécanique (J , f , Gc sont respectivement l’inertie des parties tournantes, le
coefficient de frottement visqueux, le couple de charge )

J ((dv)/(dt)) = ki − f v− Gc

le courant d’induit et la vitesse de rotation sont les deux variables d’état « naturelles » du
moteur.

Nous écrivons les équations différentielles, comme les équations de récurrence, sous
la forme de plusieurs équations du premier ordre couplées entre elles. Pour ces systèmes,
l’espace d’état est Rn, nous supposerons qu’il y a p sorties et m entrées. Les variables d’état,
de sorties et d’entrées sont regroupées respectivement dans le vecteur d’état x , le vecteur de
sorties y et le vecteur d’entrées u. Les relations sont linéaires et peuvent donc s’écrire sous
forme matricielle.©
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14 2 • Les modèles d’état

Définition 2.1 (Forme canonique LTI) x ∈ Rn, y ∈ Rp, u ∈ Rm

Cas continu : L’équation d’état d’un système LTI sous forme canonique s’écrit (2.1a) et
(2.1b) :

ẋ = Ax + Bu (2.1a)

y = Cx + Du (2.1b)

Cas discret : Dans le cas discret on utilisera les mêmes notations : matrices A, B, C , D . La
forme canonique est (2.2a) et (2.2b) :

xk+1 = Axk + Buk (2.2a)

yk = Cxk + Duk (2.2b)

On rencontrera ces équations chaque fois que le système est commandé par un ordinateur :
xk , yk , uk sont les valeurs du vecteur d’état, des sorties et des commandes au kième instant
d’échantillonnage.

Dans les deux cas, continu et discret, on parlera du système (A, B, C , D) avec x ∈ Rn,
y ∈ Rp, u ∈ Rmet où :

A [n × n] est la matrice d’état

B [n × m] est la matrice d’entrée

C [p × n] est la matrice de sortie

D [p × m] est le transfert direct entrée/sortie.
Les équations (2.1) et (2.2) sont représentées par les schémas de la figure 2.1

D

� �� Retard�C

A

C

D

BB

A

�
u xx

. y uk xk+1 xk yk

Figure 2.1 Schéma standard pour la forme canonique.

2.2.2 Représentations équivalentes

À partir de la représentation d’état précédente (A, B, C , D) il est possible d’obtenir d’autres
formes d’état en effectuant une transformation sur x . Soit P une matrice régulière (P de
rang n). On construit un nouveau vecteur d’état z par la transformation

z = Px (2.3)

Le vecteur z vérifie l’équation (2.4a) et les sorties y peuvent s’écrire en fonction de z et
de u par l’équation (2.4b).

ż = A1z + B1u (2.4a)

y = C1z + D1u (2.4b)
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Les matrices (A1, B1, C1, D1) vérifient les relations (2.5). Il suffit de remplacer x par
P−1z dans (2.1a et 2.1b) pour le démontrer

A1 = P AP−1 (2.5a)

B1 = P B (2.5b)

C1 = C P−1 (2.5c)

D1 = D (2.5d)

Définition 2.2 (représentations équivalentes) Deux représentations (A, B, C , D) et
(A1, B1, C1, D1) sont dites équivalentes, s’il existe une matrice P inversible telle que
les équations (2.5) soient vérifiées.

On peut comprendre aisément que les deux ensembles (A, B, C , D) et (A1, B1, C1, D1)
représentent bien le même système. En effet la transformation (2.3) peut être interprétée
comme un changement de base dans l’espace d’état et les matrices A, B et C sont respective-
ment transformées :

• comme la matrice représentant un endomorphisme de Rn → Rn par le changement de
base P−1.

• comme la matrice représentant un endomorphisme de Rm → Rn avec un changement
de base dans l’espace de Rn.

• comme la matrice représentant un endomorphisme de Rn → Rp avec un changement
de base dans l’espace de Rn .

On pourra donc considérer ces matrices comme les matrices représentant ces trois endo-
morphismes. Ces endomorphismes sont les éléments invariants du système, indépendants
des bases choisies dans les différents espaces vectoriels. Cette remarque sera utile pour les
formes canoniques et pour étudier les réalisations minimales.

2.2.3 La fonction de transition d’état

Pour les systèmes LTI, on sait calculer explicitement la fonction de transition d’état. On
l’obtient en intégrant l’équation différentielle ou l’équation de récurrence.

a) Cas continu

La solution générale de l’équation

.
x = Ax + Bu (2.6)

est donnée par la théorie des équations différentielles :

x(t) = exp .(A(t − to))x(to) +
∫ t

to
exp .(A(t − s))Bu(s)ds (2.7)
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16 2 • Les modèles d’état

Définition 2.3 (matrice de transition) L’opérateur exp(At) est souvent appelé matrice de
transition du système linéaire.

Rappelons que

exp(At) = I + At +
A2t2

2!
+ ..... +

Antn

n!
+ ... (2.8)

Pour calculer exp(At) explicitement on diagonalise A. Soit L = P−1 AP où P est la
matrice des vecteurs propres, alors :

exp(At) = Pexp(Lt)P−1 (2.9)

et exp(Lt) =

⎡⎣ el1t 0 0
0 el2t 0
0 0 elnt

⎤⎦ où les li sont les valeurs propres de A.

Cette méthode n’est possible que lorsque A est diagonalisable (voir chapitre 19, Calcul de
exp(At)).

b) Cas discret

La solution de l’équation
xk+1 = Axk + Buk (2.10)

est immédiate

xk = Ak x0 +
i=k∑
i=1

Ai−1 Buk−i (2.11)

Les quantités exp .(A(t− to))x(to) et Ak x0 s’appellent les régimes libres. C’est l’évolution
du système sur ses conditions initiales.

Les quantités
∫ t

to exp .(A(t − s))Bu(s)ds et
∑i=k

i=1 Ai−1 Buk−i sont les régimes forcés par
les entrées.

c) Passage continu–discret

Lorsqu’un système continu (2.6) est commandé au moyen d’un ordinateur, l’algorithme de
commande est activé périodiquement avec une période T : et la commande u est maintenue
constante entre deux rafraîchissements ; on a donc

u(t) = u(kT ) = uk t ∈ [kT , (k + 1)T [ (2.12)

il suffit d’utiliser la solution de l’équation différentielle (2.7) avec t0 = kT et t = (k + 1)T
pour obtenir le résultat :

x((k + 1)T ) = exp(A((k + 1)T − kT ))x(kT ) +

(k+1)T∫
kT

exp(A((k + 1)T − s))Bukds

= exp(AT )x(kT ) + (

T∫
0

exp [A(T − s)] Bds)uk
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2.2 Les modèles LTI 17

ou

xk+1 = exp(AT )xk +
∫ T

0
exp [A(T − s)] Bukds = Axk + Buk (2.13)

2.2.4 La stabilité

Définition 2.4 (point d’équilibre) Soit le système ẋ = f (x), on dit que xe est un point
d’équilibre si f (xe) = 0. Soit le système xk+1 = f (xk), on dit que xe est un point d’équilibre
si xe = f (xe).

Il est évident qu’au point d’équilibre, comme la dérivée est nulle, le système ne bouge pas.
Une trajectoire ayant comme origine un point d’équilibre est réduite à ce point.

On sait parfaitement que cette propriété peut être physiquement complètement illusoire :
une pyramide en équilibre sur la pointe a peu de chances d’y rester longtemps. La vraie
question est de savoir si :

• le système a tendance à rester à proximité du point d’équilibre.
• à se diriger vers lui.
• à s’en éloigner.

Ces notions s’appellent respectivement :

• stabilité ;
• stabilité asymptotique (globale si la condition initiale n’importe pas) ;
• instabilité.

Elles sont illustrées par les schémas de la figure 2.2

stable asymptotiquement
stable

globalement
asymptotiquement

stable

instable

Figure 2.2 Différents types d’équilibre.

En l’absence d’entrée, l’état d’équilibre pour les systèmes LTI continu et discret est l’état
nul (x = 0).

Exemple 2.1 (mélangeur)

On a l’équilibre lorsque
d H
dt

=
dC
dt

= 0 D’où les deux équations 1.1 et 1.2 :

D10 + D20 − D0 = 0 et C1 D10 + C2 D20 − C0 D0 = 0 avec V1 : D0 = k
√

H0 ou
V2 : D0 = donnée constante.
Dans la suite nous utiliserons les valeurs numériques suivantes pour développer les
calculs : S = 1, C1 = 50, C2 = 10, H0 = 1, C0 = 30, k = 0, 001.©
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18 2 • Les modèles d’état

Le point d’équilibre est obtenu :
V1 : en résolvant les équations précédentes D0 = 0, 01 D10 = D20 = 0, 005.
V2 : en donnant la valeur de la constante D0. Nous choisirons la valeur trouvée pour
l’équilibre dans le mode 1 soit D0 = 0, 01.
On trouve alors le même point d’équilibre : D10 = D20 = 0, 005

Stabilité et énergie sont liées. L’état d’équilibre d’un système, correspond à un état où son
énergie est minimale. Par exemple pour un système mécanique, l’équilibre est atteint quand
les énergies cinétique et potentielle sont minimales : c’est à dire : à l’arrêt et au point le plus
bas.

Nous étudierons les modèles obtenus par linéarisation autour du point d’équilibre.
On écrit alors les écarts entre les variables et leur position d’équilibre : X = X0 + x pour

obtenir le modèle linéarisé autour du point de fonctionnement.
➤ V1

S
dh
dt

= d1 + d2 − d

S

(
H0

dc
dt

+ C0
dh
dt

)
= C1d1 + C2d2 − C0d − D0c

En réécrivant ces équations sous la forme canonique :

dh
dt

= − D0

2V0
h +

d1 + d2

S
dc
dt

= −D0

V0
c +

C1 − C0

V0
d1 +

C2 − C0

V0
d2

En posant t =
V0

D0
on a le système :

d
dt

[
h
c

]
=

⎡⎢⎣− 1
2t

0

0 −1
t

⎤⎥⎦[h
c

]
+

⎡⎢⎣ 1
S

1
S

C1 − C0

V0

C2 − C0

V0

⎤⎥⎦[ d1

d2

]
(2.14)

➤ V2
dh
dt

=
d1 + d2 − d

S
(2.15)

dc
dt

= −D0

V0
c +

C1 − C0

V0
d1 +

C2 − C0

V0
d2 (2.16)

Sous la forme matricielle on obtient :

d
dt

[
h
c

]
=

[
0 0

0 −1
t

] [
h
c

]
+

⎡⎢⎣ 1
S

1
S

C1 − C0

V0

C2 − C0

V0

⎤⎥⎦ [
d1

d2

]
+

[
− 1

S
0

]
d (2.17)
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2.2 Les modèles LTI 19

Application numérique
t = 100s

C1 − C0 = 20
C2 − C0 = −20

➤ V1
d
dt

[
h
c

]
=
[
−0.005 0

0 −0.01

] [
h
c

]
+

[
1 1

20 −20

] [
d1

d2

]
(2.18)

➤V2
d
dt

[
h
c

]
=
[

0 0
0 −0.01

] [
h
c

]
+

[
1 1

20 −20

] [
d1

d2

]
+

[
1
0

]
d (2.19)

Définition 2.5 (système LTI stable) On dira qu’un système LTI est (asymptotiquement)
stable si l’état x = 0 est (asymptotiquement) stable.

Comme on dispose de la solution explicite :

x(t) = exp(At)x0 (2.20a)

xk = Ak x0 (2.20b)

les résultats sont immédiats.

Proposition 2.6 (stabilité) Un système LTI continu est stable si les valeurs propres de la
matrice d’état sont à parties réelles négatives. Un système LTI discret est stable si les valeurs
propres de la matrice d’état ont un module inférieur ou égal à un.

Proposition 2.7 (stabilité asymptotique) Un système LTI continu est asymptotiquement
stable si les valeurs propres de la matrice d’état sont à parties réelles strictement négatives.
Un système LTI discret est asymptotiquement stable si les valeurs propres de la matrice
d’état ont un module strictement inférieur à un.

Proposition 2.8 Un système LTI asymptotiquement stable est globalement asymptotiquement
stable.

Démonstration. Ces résultats découlent directement des équations (2.20)

Exemple 2.2

V1 L’équilibre est asymptotiquement stable puisque les valeurs propres de la matrice

d’état (− 1
2t

et −1
t

) (2.14) sont des nombres négatifs.
V2 L’équilibre est seulement stable puisqu’une valeur propre vaut zéro (2.17).
L’explication physique est simple. Dans cette modélisation le débit de fuite est consi-
déré comme une perturbation, donc indépendant de la hauteur de liquide dans la cuve.
Si le débit d’entrée est égal à ce débit de fuite, toute hauteur est un point d’équilibre.

Remarque : Il est important de remarquer que les matrices d’état sont différentes.©
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20 2 • Les modèles d’état

Il est toujours hasardeux de modéliser un comportement inconnu (ici par exemple, on peut
imaginer qu’on ignore la loi qui lie le débit à la hauteur) par une perturbation indépendante.
La dynamique interne du système, reflétée par la matrice d’état, est modifiée puisque le débit
de fuite n’est plus lié à la hauteur.

La matrice C dépendra des capteurs utilisés.

2.2.5 La commandabilité

Cette propriété donne la réponse au problème suivant : étant donnés un état initial x0 imposé
et un état final x f désiré, existe-t-il au moins une commande qui amène le système d’un état
vers l’autre ? Par exemple, est-il possible d’amener un avion parallèlement à l’axe de la piste
d’atterrissage alors qu’il vole à une altitude de 3000 m, avec une vitesse de 600 km/h ?

On comprend l’intérêt de pouvoir répondre à cette question avant de lancer une étude pour
rechercher la meilleure commande. Mais il y a plus : si un système possède cette propriété,
on est assuré de pouvoir au moins le stabiliser avec une structure de commande simple.
A contrario, si la commandabilité n’est pas vérifiée sur le système à commander, on peut
même être incapable d’arriver à stabiliser le système ; et ceci quelle que soit l’habileté de
l’automaticien ! C’est la structure du système qui est à modifier avant de pouvoir entreprendre
son contrôle.

Remarquons que cette propriété est très exigeante : avec les entrées, il ne s’agit pas
uniquement de faire évoluer les sorties, mais d’amener toutes les composantes du vecteur
d’état à des valeurs prédéfinies. Est-il évident, par exemple (figure 2.3), que l’on puisse
imposer une valeur arbitraire du courant i et de la tension Vs dans le circuit électrique
lorsqu’on dispose de la seule source de tension Ve comme commande ?

Vc

R

ic

i

L
CVo

Figure 2.3 Circuit passif (R, L, C).

Il n’est pas facile de répondre à cette question de manière intuitive. Heureusement, la
vérification de cette propriété est immédiate dans le cas mono-entrée, elle ne présente de
difficulté que dans le cas multivariable.

Pour désigner indifféremment les systèmes continus (2.6) et discrets (2.10), on utilisera
l’appellation « système (A, B) ».




