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Preéface

Comme le rappelle cet ouvrage, la pratique de I’automatique remonte a I’ Antiquité. Héri-
tiere des modeéles de la physique, s’appuyant sur les applications des mathématiques et de
I’informatique, I’automatique a progressivement étendu ses méthodes a un grand nombre
de champs disciplinaires. Elle est devenue progressivement une partie intégrante et incon-
tournable des sciences de I’ingénieur. Mais peut-on parler de discipline a son sujet tant son
champ d’application est vaste et varié (méthodes d’optimisation, commande des machines,
diagnostic...) ? Méme I’analyse financiére ou la biologie peuvent recourir a ses méthodes ou
contribuer a enrichir ses modéles.

Le xx¢ siécle nous a éloignés de la croyance naive en la toute puissance de la mécanique
rationnelle et de quelques lois physiques simples et fondamentales dans la modélisation du
monde naturel ou créé par I’Homme. C’est justement la complexité croissante des modéles
et leur caractere interdisciplinaire qui placent I’automatique dans une position centrale.

La complexité des problémes auxquels I’automatique est confrontée rend d’autant plus
ardue la tache de ceux qui veulent s’initier a ses modéles et méthodes. Méme quand il veut
approfondir les questions, un ouvrage de vulgarisation ne peut que survoler les problémes.
A I’inverse, un ouvrage spécialisé n’abordera qu’un champ restreint laissant le lecteur dans
I’ignorance de la richesse des ressources offertes par I’automatique. Une encyclopédie peut
surmonter ce type de difficulté mais au prix d’un alourdissement considérable de I’ouvrage
risquant de provoquer la lassitude du lecteur. En fin de compte elle devra, elle aussi, renvoyer
a des ouvrages spécialises.

En évitant ces écueils, le présent ouvrage réalise une synthése originale entre initiation et
formation. Il propose au lecteur dans presque chaque champ de I’automatique une initiation
solide qui procure une culture de base indispensable a une approche ouverte des probléemes
auxquels I’ingénieur peut étre confronté. La volonté de limiter le volume a un seul tome a
conduit & exclure provisoirement I’informatique industrielle. Le lecteur intéressé pourra se
reporter aux ouvrages spécialisés sur le temps réel, les réseaux programmables, les automates
industriels...

La présentation des modéles part des applications et justifie pleinement I’effort d’abs-
traction nécessaire. La lecture de I’ouvrage n’est pas nécessairement linéaire. Nul doute
gu’une telle approche donne au lecteur le goQt de poursuivre et d’approfondir le champ qui
I’intéresse. Une bibliographie récente le guide dans cette démarche. Une boite a outils placée
en fin d’ouvrage prend en compte la diversité des parcours de formation et permet au lecteur
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de se remettre en mémoire quelques éléments de calcul matriciel, d’algebre de Boole ou de
théorie des graphes.

Vivant, évolutif, cet ouvrage rénove la notion traditionnelle d’ouvrage de référence. L’ex-
tréme richesse des thémes traités donne au lecteur une représentation saisissante des outils
mis a la disposition des ingénieurs pour résoudre des problémes industriels de plus en plus
complexes.

Le développement de la science et de la technologie, la complexité des problémes abordés
rendent impossible la concentration de compétences diversifiées et de haut niveau sur un
tout petit nombre d’individus. L’évolution trés rapide des connaissances et des méthodes
fait que le temps n’est plus a la rédaction par un ou deux auteurs d’ouvrages sur le large
champ de connaissances des sciences de I’ingénieur. C’est tout le mérite des enseignants de
I’TENSEM (Ecole Nationale Supérieure d’Electricité et de Mécanique de Nancy) d’avoir su
mettre en place dans la durée un travail collaboratif exemplaire par sa qualité et le nombre
des intervenants. Leur grande expérience pédagogique en école d’ingénieurs leur a permis
de proposer une initiation aux difficultés graduées allant du concret vers I’abstrait.

La visée pédagogique de I’ouvrage le destine aux étudiants en école d’ingénieurs, aux
étudiants de I’enseignement supérieur en transition vers les carriéres d’ingénieurs, a tous
ceux qui, engageés dans la vie active, sont amenés par la nature de leurs travaux ou la nécessité
d’une évolution de carriére a enrichir leurs compétences en automatique. Les applications
étant au cceur de I’ouvrage, les étudiants titulaires d’un BTS ou DUT et envisageant une
poursuite d’études peuvent tester leur appétence pour les domaines abordés grace a une
transition progressive vers I’abstraction.

Les carriéres de I’enseignement ne doivent pas non plus étre oubliées : un candidat a
I’agrégation de Physique Appliquée ou de Génie Electrique y trouvera I’occasion d’enrichir
sa vision d’un champ disciplinaire. Un enseignant de classes préparatoires y puisera de
précieux renseignements sur les contenus de formation actuels en école d’ingénieurs et les
compétences intellectuelles auxquelles il doit préparer ses étudiants. Cet ouvrage est aussi un
excellent moyen pour un enseignant en BTS Contréle Industriel et Régulation automatique
de parfaire ou d’actualiser ses connaissances.

Pierre MALLEUS
Inspecteur Général de I’Education Nationale



Table des matieres

PREFACE par Pierre Malléus

PREMIERE PARTIE

LES MODELES (STRUCTURE ET ANALYSE)

© Dunod - Toute reproduction non autorisée est un délit

CHAPITRE 1 « INTRODUCTION
1.1 La notion de modéle

1.2 Les systémes dynamiques

CHAPITRE 2 o LES MODELES D’ETAT
2.1 Introduction
2.2 Les modeéles LTI

CHAPITRE 3 o LES FONCTIONS DE TRANSFERT
3.1 Introduction

3.2 Opérateur de transfert

3.3 Propriétés

3.4  Passage transfert-état

3.5  Associations de transferts

CHAPITRE 4 « SYSTEMES NON LINEAIRES
4.1 Modeles et phénoménes non linéaires
42  Stabilité d'un état d'équilibre

43 Linéarisation

44  Méthode de Lyapunov

4.5 Commandabilité des systémes non linéaires

CHAPITRE 5 « MODELES SIMPLIFIES
5.1 Introduction

5.2 Réalisations équilibrées

12
12
13

28
28
28
35
36
43

49
49
56
58
70
80

84
84
84



Vil Table des matiéres

5.3  Perturbations singuliéres : théorie générale 94
5.4 Perturbations singuliéres : le cas LTI 100
5.5  Conclusion 107
CHAPITRE 6 « SUITES ET PROCESSUS ALEATOIRES 108
6.1 Introduction 108
6.2 Variables aléatoires 109
6.3  Suites de variables aléatoires et processus stochastiques 118
6.4  Représentation spectrale et filtrage des processus aléatoires 126
6.5 Modeles de processus aléatoires 133
CHAPITRE 7 « MODELES DES SYSTEMES A EVENEMENTS DISCRETS 141
7.1 Introduction 141
7.2 Le séquencement des événements 143
7.3 Prise en compte du temps 183
74  Complexité et structuration 197
CHAPITRE 8 « MODELISATIONS A BASE DE COMPOSANTS 199
8.1  Introduction 199
8.2 Introduction au paradigme objet 200
8.3  Modélisation de la structure statique d'un systéme avec UML 206
8.4  Théories des analogies en ingénierie des systémes 208
85  Schéma-bloc 214
8.6  Graphes de liaison énergétique 217
8.7 Méta-modélisation objet des systemes dynamiques 221
8.8 Langage Modelica 228

DEUXIEME PARTIE

COMMANDE DES SYSTEMES

CHAPITRE 9 « COMMANDE DES SYSTEMES LINEAIRES 237
9.1  Introduction 237
9.2 Lacommande optimale des systémes dynamiques 240
9.3  Lacommande prédictive 251
9.4  Lacommande par retour d'état 258
9.5 Les problémes de régulation 265

9.6  Synthése d'une régulation 287



© Dunod - Toute reproduction non autorisée est un délit

Table des matiéres

CHAPITRE 10 « COMMANDE DES SYSTEMES NON LINEAIRES

10.1
10.2
10.3
104
10.5

Introduction

Quelques problémes de commande non linéaire
Utilisation d'outils développés pour les systémes linéaires

Quelques méthodes de commande non linéaire

Conclusion

CHAPITRE 11 « METHODES D'OPTIMISATION

1.1
1.2
1.3

Introduction
Optimisation non contrainte

Optimisation contrainte

TROISIEME PARTIE

MISE EN EUVRE DE L’AUTOMATISATION

CHAPITRE 12 « TRAITEMENT DU SIGNAL

12.1
12.2
12.3
124
12.5
12.6
12.7
12.8

Introduction et sommaire

Généralité sur les signaux

Traitements élémentaires sur les signaux
Transformée de Fourier

La Transformée en z

Transmittance en z d'un traitement numérique

Le filtrage des signaux

Synthése des filtres numériques

CHAPITRE 13 « INSTRUMENTATION

13.1
13.2
13.3
134
13.5

Introduction

Les capteurs

Caractéristiques métrologiques de la chaine
Le traitement de la mesure analogique

L'acquisition de données

CHAPITRE 14 « LA VISION ARTIFICIELLE

14.1
14.2
14.3
14.4

Introduction
Acquisition des images
Traitement des images

Conclusion

297
297
297
299
306
317

318
318
319
332

355
355
356
361
367
377
386
391
409

421
421
422
439
442
460

472
472
473
501
523



CHAPITRE 15 o LES ACTIONNEURS ET LES TRANSMETTEURS DE MOUVEMENT

15.1
15.2
15.3
15.4

Introduction
Les actionneurs électriques
Les actionneurs hydrauliques

Les transmetteurs de mouvements sans glissement

QUATRIEME PARTIE

Table des matiéres

524
524
525
545
552

SURVEILLANCE, SURETE DE FONCTIONNEMENT ET MAINTENANCE

CHAPITRE 16 » SURVEILLANCE ET DIAGNOSTIC

16.1
16.2
16.3
16.4

Introduction générale
Validation de données
Diagnostic a base d'observateurs

Analyse en composantes principales et diagnostic

CHAPITRE 17 « SURETE DE FONCTIONNEMENT

17.1
17.2
17.3
174
175
17.6
17.7
17.8
17.9

Concepts et définitions

Composantes de la sireté de fonctionnement d'une entité
Les temps caractéristiques pour la S.D.F.

Mesures de la fiabilité d'une entité

Mesures de la maintenabilité d'une entité

Fiabilité d'un systéme

Disponibilité des systémes réparables représentation d'état
Autres modéles et outils de la SdF

Logiciels et ateliers logiciels dédiés aux études de SdF

CHAPITRE 18 « MAINTENANCE

18.1
18.2
18.3

Introduction
Les définitions, les normes

Outils méthodologiques

CHAPITRE 19 « BOITE A OUTILS

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Quelques rappels d'algébre linéaire

Calcul opérationnel

Composantes principales

Bref rappel sur les normes et les valeurs singuliéres
Bréve présentation du filtre de Kalmann

Dérivée et Crochets de Lie

Matrices de passage d'un espace colorimétrique a I'autre

563
563
565
586
603

615
615
619
622
622
625
627
637
656
658

660
660
661
669

697
697
698
698
699
701
703
704



Table des matiéres

19.8 Estimateur des moindres carrés

19.9 Opérations de dérivation matricielle
19.10 Applications du chapitre « Diagnostic »
19.11 Rappels d'algébre de Boole

19.12 Rappels sur la théorie des graphes

BIBLIOGRAPHIE

INDEX

Xl

705
706
708
713
719

735

749






Partie |
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Chapitre 1

Introduction

L’automatique s’intéresse aux systemes. Constitués d’ensembles naturels (bancs de harengs)
ou artificiels (avions), les systemes évoluent au cours du temps en fonction de sollicita-
tions extérieures. Ces sollicitations sont appelées entrées. Lorsque ces entrées peuvent étre
créées pour piloter le systeme, on les appelle commandes ou entrées de commande ou encore
entrées, (bruit pour diriger le banc de harengs, angle de la gouverne de profondeur de I’avion),
lorsque ces entrées sont indépendantes de la volonté de I’automaticien on les appelle per-
turbations (présence d’un prédateur, trou d’air), les informations disponibles sur le systeme
sont appelées sorties (information sonar, angle de piqué), figure (1.1). Le r6le de I’automa-
ticien est de concevoir le contrdle des systémes. Sous ce nom trés général, on trouve des
actions tres différentes : maintien de I’avion en vol horizontal a vitesse constante (action de
régulation), orientation du banc de harengs vers les filets de péche (action de pilotage ou de
commande), calcul de la trajectoire que doit suivre I’avion pour économiser le carburant tout
en arrivant & I’heure (action de planification, d’optimisation), évaluation de la pression dans
une canalisation en I’absence de capteur (action d’observation), dire que le fonctionnement
du réacteur est parfait ou au contraire annoncer le fonctionnement défectueux d’un organe
(action de diagnostic ou de surveillance). Pour mener a bien ces différentes taches, on utilise
les informations fournies par les sorties et on élabore les commandes si I’action I’exige.

perturbations

h J
commandes sorties

SYSTEME

[ >

Figure 1.1 Un systeme et ses liaisons avec |'extérieur.
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On comprend aisément que la connaissance des sorties ne permet que trés rarement d’aboultir.
Il est nécessaire de posséder des informations sur le comportement du systéme sous I’in-
fluence des commandes, des perturbations, du temps, et comment cette évolution se traduit
au niveau des sorties. L’ensemble de ces informations constitue le modéle.

1.1 LA NOTION DE MODELE

Définition 1.1 (modéle) Le modeéle est I’ensemble des informations qui permettent de calcu-
ler I’évolution d’un systeme en fonction des entrées qui lui sont appliquées.

Cette définition tres générale appelle quelques commentaires :

¢ les modéles peuvent étre de nature trés variées : équations, tables, cartes, modéle lin-

guistique.

Un modele simple pour réguler la température :

Parmi les régulations que nous avons tous rencontrées figure sirement celle de la
température d’une piéce. La partie visible est le thermostat sur lequel on affiche la
température desirée. Les modeles de thermostats les plus simples jouent a la fois les
roles de capteur et de régulateur. Pendant longtemps un thermostat a été constitué d’un
systeme a bilame qui ouvrait un circuit électrique quand la chaleur atteignait un certain
stade et fermait celui-ci dés que I’on descendait en dessous de cette méme température.
Cette régulation est fondée sur un modeéle élémentaire de la température d’une piece : si
on chauffe, la température augmente, si on ne chauffe pas la température diminue !

o les modeles ne prétendent pas étre une vérité (cf. § 1.1.1) mais un outil de représentation
plus ou moins imparfait. La confusion est entretenue par I’'usage. En effet, bien que le
modeéle ne soit pas le systéme, on utilise souvent le mot « systéme » au lieu du mot
« modele » pour parler d’une classe particuliere : « systéme linéaire » (qui n’existent
pas dans la nature) au lieu de « systéme a modeéle linéaire ».

e un méme systéeme peut étre représenté par des modeles de natures différentes.

¢ un modele n’a de sens véritable que par I’utilisation que I’on en fait. Un « bon modele »
est celui qui est le mieux adapté a son utilisation.

e un modele a en général un domaine de validité, en conséquence plusieurs modéles
pourront étre nécessaires pour décrire un fonctionnement.
e la simulation d’un systéme est la résolution de son modéle.

o I’identification est la technique utilisée pour rechercher les valeurs des parametres d’un
modéle.

1.1.1 Lois et Modeéles

Le probleme n’est pas simple. Il suffit de lire la premiére ligne de mots clés de la section 2
du CNRS qui s’intitulait « Théories physiques : méthodes, modéles et applications » pour
trouver : « Lois et interactions fondamentales ». Pour une discussion sur les « lois physiques »
on pourra se reporter au livre de Christian Magnan « La nature sans foi ni loi » et au condensé :
http://www.dstu.univ-montp2.fr/GRAAL/perso/magnan/Nature209.html. Pour
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une discussion sur la nécessité des modeles, citons un extrait du dossier : « Les modeles de
I’Univers » http://www.astrosurf.org/lombry/cosmos-modelesunivers.html du
projet LUXORION : « En bousculant la symbolique Kantienne, les chercheurs qui désiraient
étudier I’Univers, déterminer les lois qui le gouvernent, expliquer la formation et I’évolution
des galaxies, ont dii imaginer des « modéles » qui le représentaient, modeles hypothétiques
qui englobaient toutes les propriétés connues de I’'Univers. Ces modeéles sont des conceptions
abstraites, mathématiques, ou les sensations sont absentes. Elles n’ont rien a voir avec la
réalité... »

1.1.2 Comment classer les modeles ?

La définition (1.1) peut s’appliquer a des quantités de modele de nature et de forme différentes.
On imagine bien que les méthodes qui seront développées pour concevoir et réaliser le
contréle vont dépendre de ces modéles. Il est donc intéressant de savoir si une classification
peut aider dans la recherche d’une méthode adaptée. Des critéres de classement divers ont
été énoncés. Considérons en quelques-uns :

Soyez vigilant : Les variables ne sont pas des constantes, ce sont des fonctions du
temps (normal si on veut qu’elles varient!). 1l faut distinguer la variable x de la valeur
x(t) qu’elle prend a un instant donné.

1. Nature des variables qui interviennent pour décrire le fonctionnement du systéme, ses
entrées et ses sorties :
o variables réelles (R, R") : systémes continus.
e variables logiques {0; 1}" : systémes séquentiels ou a événements discrets.
o variables réelles et variables logiques : systémes hybrides.
e variables aléatoires : systémes stochastiques.

2. Nature de la variable temps :

e variable réelle : R : systémes a temps continu.
e variable discréte : N : systémes a temps discret, systémes échantillonnés.

3. Nature des équations :

e équations différentielles : systemes différentiels, systémes a constantes localisées.
e équations aux dérivées partielles : systémes a constantes réparties.

e équations aux différences : systémes discrets.

e équations linéaires : systémes linéaires.

e éguations non linéaires : systémes non linéaires.

4. Maniére d’obtenir le modele :

e & partir de lois physiques : modéle de connaissance.

e a priori (on ne se préoccupe pas de la réalité physique du systéme, mais on cherche
la représentation qui nous convient le mieux pour décrire le phénomene) : modele de
représentation.
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5. Nature des informations fournies par le modeéle :

e information sur la relation entre les entrées et les sorties : modéle entrée-sortie.
e information sur les variables internes (pas forcément mesurables) : modele d’état.

\ous retrouvez ces classes de modeles en titre de livre ou en téte de chapitre comme
dans cet ouvrage, en tout cas comme mots-clés en automatique. Comme ces classes sont
faites sur des critéres différents, rien n’empéche d’en associer plusieurs : systémes linéaires
échantillonnés. La conception du contrdle est presque toujours faite en utilisant un modéle,
il faudra donc s’assurer, de préférence avant de mettre en route, que ce contr6le fonction-
nera encore correctement sur le systéme dont le comportement n’est pas exactement celui
prévu par le modéle. C’est le probléme de la robustesse qui doit étre un souci constant de
I’automaticien. Certaines conceptions, trés performantes sur le papier, ont connu des échecs
retentissants par défaut de robustesse.

1.2 LES SYSTEMES DYNAMIQUES

1.2.1 Définitions

Malgré la diversité des modeles, on s’apercoit assez rapidement d’analogies de comportement
entre des systémes de natures trés différentes : systémes a événements discrets et systémes
continus par exemple. Existe-t-il une théorie générale ? Nous n’avons pas la réponse a cette
guestion, mais une notion assez générale permet de réunir des modeles trés différents et de
découvrir que la méme méthode (la programmation dynamique) peut s’appliquer aussi bien
a la recherche d’un chemin dans un graphe que dans le probléme de la commande optimale
de systéemes continus. C’est la notion de systémes dynamiques.

Cette notion est malheureusement tres souvent donnée de maniere trés restrictive (par les
mécaniciens) et se limite aux systemes différentiels, lui faisant perdre ainsi I’essentiel de son
intérét.

La notion de systeme dynamique repose sur la notion d’état. On fait I’hypothése qu’il
existe un ensemble de variables dont la connaissance a un instant donné permet le calcul
de I’évolution future, si on connait les entrées. Cette notion est naturelle pour les modéles
différentiels ; on sait que la solution d’une équation différentielle d’ordre n dépend de n
conditions initiales. Lorsque ces conditions initiales sont connues, la solution de I’équation
différentielle est completement déterminée. Elle est aussi valable pour bien d’autres systemes
dont nous donnerons quelques exemples. Elle n’exclut ni les systémes chaotiques, ni les
systémes stochastiques.

Remarque : Le chaos est cartésien. Un systéme chaotique est un systeme dynamique
régi par des équations différentielles dont les solutions sont extrémement sensibles
aux variations des conditions initiales, au point qu’elles en deviennent imprévisibles.

On appellera X, I’ensemble des valeurs prises par ces variables, cet ensemble peut étre
fini :{0; 1} pour des variables booléennes, infini : intervalle de R, de dimension finie : R" et
méme de dimension infinie.
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Il faut aussi :

e préciser I’ensemble des instants pendant lesquels on s’intéresse au systéme. C’est un
ensemble ordonné de réels que I’on notera T. Cela signifie que lorsqu’on a deux instants
t; et t,, on est capable de dire lequel suit ou précede I’autre.

e indiquer les valeurs des entrées du systéme, on notera U I’ensemble qui les contient ;
exemple : I’intervalle [—10 volts, +10 volts] pour une tension d’entrée.

o définir les entrées admissibles groupées dans I’ensemble noté (). Ce sont les fonctions
de T dans U acceptables pour le systeme ; exemple : les fonctions constantes sur les
intervalles [kTe, (k + 1)Te[ pour une régulation numérique de période Te.

o définir les valeurs des sorties : ensemble Y.

o définir les fonctions de sorties y(x,t,u) : ¢’est-a-dire comment calculer les sorties avec
I’état, le temps et la commande.

e exprimer la phrase « on peut calculer I’évolution future... ». C’est la clé du systéme
dynamique : il est caractérisé par sa fonction de transition d’état ¢(t, to, X (to), @), fonc-
tion qui fournit la valeur de I’état a tout instant t qui suit un instant ty pour lequel on
connait la valeur de I’état X (to) et la commande w appliquée sur I’intervalle [ty t]. Cette
fonction ne peut pas toujours étre écrite de maniére simple : on ne sait pas, en général,
écrire analytiqguement la solution d’une équation différentielle non linéaire, mais on sait
gue moyennant quelques hypothéses, cette solution existe et est unique pour des condi-
tions initiales données. On remarque que seules les valeurs de I’entrée entre t; et t ont
une importance ; il est inutile de connaitre ces valeurs avant ty (notion d’état), ni aprés
t (notion de causalité). L’ensemble des valeurs {t, ¢(t, ., .,.)} constitue un ensemble
appelé trajectoire du systéme.

1.2.2 Quelques exemples

Selon les ensembles que nous venons de définir, on obtient différents types de modeles

Ensembles | Systémes différentiels Systéemes séquentiels Systéemes échantillonnés
T R N N
X R" {0,1}" R"
u R™ {0,1}" R™
Q R — R" N — {0,1}" suites : N — R"
Y R {0,1}" R
auxquels on peut apporter quelques précisions :

Systéme a temps continu T=R

Systeme a temps discret T=N

Systeme de dimension finie X est un espace de dimension finie

Systémes a états finis X est fini

Systeme fini X, U, Y, sont des ensembles finis
Le systéme dynamique 2, est dit libre si {2 a un seul élément.
Nous allons illustrer ces notions par quelques exemples concrets trés simples :



8 1 - Introduction

a) Systémes différentiels

L’évolution des systémes décrits par une équa- D,C, D,C,
tion différentielle est complétement définie par un
nombre de variables égal a I’ordre de I’équation
différentielle. On dit que la solution dépend de n
constantes d’intégration. Nous prendrons comme
exemple un dispositif classique qui nous servira
pour illustrer les notions que nous présenterons
aux chapitres 1 et 2. H

Il s’agit d’un mélangeur parfait illustré par la
figure (1.2) : on suppose que le mélange des pro-
duits s’effectue de maniére instantanée et que la 1r
concentration C du produit dissout dans le bac est
homogeéne. L’objectif du contrdle est de régler le
niveau H et la concentration C du soluté. Le bac
est cylindrique de section S. 1l est alimenté par deux sources de concentration C; et C,
dont on controle les débits D, et D, grace a deux vannes. On étudiera deux modes de
fonctionnement :

Mode 1 : V1. On admettra que le débit de sortie est D(t) = ky/H(t).

Mode 2 : V2. On considere que le débit de sortie est une perturbation.

Pour V1 les entrées de commande sont D; et D, (ouverture des vannes, ou commande des
vannes...) et les sorties sont : H et C.

Pour V2 les entrées de commande sont D, et Dy, I’entrée de perturbation est D et les
sorties sont H et C.

On obtient aisément les équations de ce systeme en écrivant les deux équations de conser-
vation de la masse :

DC
Figure 1.2 Schéma d'un mélangeur idéalisé.

e conservation de la masse totale

s%—': =D;+D,—D (1.1)
e conservation de la masse du produit dissout
%:SHZ—?+SC%—?:C1D1+CZDZ—CD (1.2
ou encore en remplagant dans (1.2) dd—:' par sa valeur tirée de (1.1) :
SH%—$:C1D1+C2D2—CD1—CD2 (1.3)

Ces équations nous indiquent que deux variables sont nécessaires et suffisantes pour calculer
I’évolution des sorties (les entrées sont supposées connues). Donc I’espace d’état est R? et
deux variables d’état naturelles sont H et C.

De nombreux systémes physiques sont modélisés par des modeles différentiels. Des
techniques fondées sur les échanges d’énergie permettent de construire les modeles de
systémes physiques complexes constitués de sous systémes interconnectés (chapitre 8)
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b) Systémes a temps discret

Considérons un compte d’épargne. On supposera que la période de calcul est la quinzaine et
que le taux de rapport par quinzaine est fixe soit a.

Mn = Mn—l(l + a) * Sy (1-4)

A la quinzaine numéro n, on est donc capable de calculer le montant disponible sur le
compte (M,), si on connait la somme initiale (Mg) a la quinzaine 0 (date d’ouverture du
compte) et la suite des sommes déposées, S1, Sz, . . ., Sp.

T = Nest I’ensemble des numéros de quinzaines.

s; sont les valeurs de I’entrée U = Z.

() est I’ensemble des suites s : N — Z.

On voit sur I’équation (1.4) que pour calculer la valeur du compte a une date donnée il
faut connaitre cette valeur a la quinzaine précédente. Cette valeur est nécessaire et suffisante.
L’espace d’état est de dimension 1, X = Z.

Lorsque la commande d’un systéme est réalisée par ordinateur (figure 1.3), les com-
mandes élaborées par un algorithme sont appliquées par I’intermédiaire d’un convertisseur
numeérique-analogique et sont maintenues constantes pendant la période d’échantillonnage T.
Les fonctions u(.) ont une forme particuliere : fonctions en escalier, constantes sur I’intervalle
d’échantillonnage.

ut) =ug; vt e [kT,(k+1)T] (1.5
L. | Convertisseur u(t) .
ALGORITHME Ll numérique » SYSTEME |—
Analogique
FY 'y
S,=s(nT) |Convertisseur Sorties s(t)
numérique |

Consignes Analogique

Figure 1.3 Schéma d’une régulation numérique.

L’état du systeme et les sorties sont des variables continues, mais au niveau de I’algorithme
on ne manipule que des suites. On utilisera alors une équation d’état discréte faisant intervenir
les valeurs de I"état aux instants d’échantillonnage x, = x(nT). Elle prendra la forme (1.6) :

Xn+1 == f(Xn’Un) (1.6)
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¢) Systémes a événements discrets

Pour contréler le patinage d’une roue ou pour commander le
mécanisme d’entrainement d’une bande magnétique il est indis-
pensable de connaitre le sens du mouvement. Ceci se réalise
de maniére trés simple, de la fagon suivante : un disque dont
une moitié est opaque (figure 1.4), est solidaire de I’arbre du
moteur d’entrainement et tourne devant deux cellules photo-
électriques c; et c,. Ces cellules seront éclairées ou non selon
gu’elles sont devant la partie transparente ou la partie opaque
du disque. Quand elles sont éclairées ¢c; = 1 et 0 sinon.

Il est évident que la seule connaissance des états des deux
cellules, éclairées ou non, ne suffit pas a déterminer le sens de
rotation. La séquence des signaux intervient.

T=R

Figure 1.4 Détecteur de sens
de rotation.

Les entrées sont c; et c,, ces variables sont binaires et ne prennent que deux valeurs :
éclairées ou non éclairées.
Q={R —[0; 1]2}

La sortie S est le sens de rotation. On ne pourra savoir le nombre de variables d’état
qu’apres avoir fait la synthése de I’automate qui détermine le sens de rotation.

Le systéme comporte 4 états par sens de rotation. On montre que deux variables d’état
(x1,X2) suffisent pour décrire I’évolution du systéme. Les futures valeurs (x;’, x5) prises par
I’état quand les entrées changent, sont exprimées en fonction des valeurs, a I’instant présent,
de ces mémes variables d’état et des entrées. La sortie S a I’instant présent est donnée par
I’état et les entrées, a I’instant présent. Les équations du systéme sont :

XI = CyX1 + C1Cx + C1X1
X; = C1Xg + T1C2 + CoX

S = X1X,C1 + X1X2Cp + X1X2C1 + X1X2C) (18)

(1.7)

d) Systémes Dynamiques Hybrides

La description du fonctionnement de certains systémes nécessite I’utilisation de variables
continues et de variables booléennes. Ces systémes sont appelés systemes dynamiques
hybrides. On les rencontre dans tous les secteurs industriels. Donnons un exemple élémen-
taire.

On considére la commande du remplissage d’un réservoir (figure 1.5). Le débit d’entrée
d. est commandé par la vanne V de type tout ou rien.

Le débit de sortie ds est inconnu, il dépend des utilisateurs. On supposera : ds < de.

La commande se fait de la maniére suivante :

e la vanne V est fermée lorsque la hauteur d’eau dans le réservoir atteint le niveau haut
Np, détecté par le capteur Cy,.

o la vanne est ouverte lorsque le niveau atteint son seuil bas Ny, détecté par le capteur Cy,.
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V : état de la vanne

de
== N}, : niveau haut
ry
~h
== N, : niveau bas
k 4 e ds

Figure 1.5 Commande de remplissage d’un réservoir.

Deux types d’équations décrivent le systéme :
1) Les équations de la partie continue (loi de conservation de la masse) :

dh
SE =Vde —ds (1.9)

ou V = 0silavanne est fermée et V = 1 si la vanne est ouverte.
2) Les équations Booléennes de la partie discréte :

V*=Cp+ChV (1.10)

avec
Ch=1sih <N, Ch=1sih >N (1.12)

C’est I’ensemble des équations (1.9, 1.10) et des conditions de transition des variables Cy,
et Cy (1.11) qui définit le fonctionnement du systéme et permet de simuler son évolution.

T=R

La sortie est h. Les entrées sont d. entrée réelle de commande, ds entrée réelle de pertur-
bation. L’état contient des variables binaires : Cy, et Cy,, et une variable réelle : h.



Chapitre 2

Les modeles d’'état

2.1 INTRODUCTION

La notion de systemes dynamiques nous montre que la modélisation la plus riche est celle qui
utilise la notion d’état puisqu’elle représente un ensemble de variables a priori plus grand que
celui constitué par les entrées et les sorties. Nous commencerons donc par étudier les modeéles
qui Iutilisent et que I’on nomme classiquement : « modéles d’état » en opposition avec les
modeles « entrées-sorties » qui peuvent paraitre plus naturels puisqu’ils ne concernent que
les variables « visibles » de I’extérieur. Nous verrons que s’il est toujours possible de trouver
un modéle « entrées-sorties » a partir d’'un modele d’état, la réciproque n’est pas toujours
vraie et nécessite des hypothéses supplémentaires.

Nous commencerons par les modeles linéaires, non pas parce que ce sont les plus simples,
mais parce qu’ils permettent d’introduire de nombreuses notions indispensables a I’automa-
tique et que bien souvent leur utilisation pour concevoir le contrdle est suffisante. On utilise
trés souvent un modéle obtenu par linéarisation d’un modele non linéaire, autour d’un point
d’équilibre ou autour d’une trajectoire (chapitre 4). C’est en tout cas, et a juste raison, la
démarche normale de I’ingénieur avant de mettre en oeuvre les techniques non linéaires.
Nous traiterons essentiellement les systémes linéaires a parameétres constants. En effet, méme
si certaines propriétés restent vraies dans le cas ou les paramétres varieraient en fonction du
temps, les résultats pratiques sont peu nombreux. Quant aux systémes dits « a parameétres
variants », leurs méthodes d’étude relévent clairement des méthodes non linéaires. Il reste a
choisir entre les modeles a temps continu et les modéles a temps discret. Il y a des arguments
en faveur des uns ou des autres.

o Si le temps est continu les systémes a controler ne le sont pas forcément (cf. le compte
d’épargne) et la vision que I’on en a actuellement avec les commandes numériques est
clairement & temps discret.

e Bien qu’elles soient plus étudiées dans les cours de mathématiques, les équations diffé-
rentielles ne sont pas plus simples que les équations de récurrence.
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o |l estvrai que les performances, en particulier les réponses temporelles, sont plus simples
a interpréter en temps continu.

o Les démonstrations sont plus simples en temps discret, car il suffit en général de compter
les équations.

Il serait préférable de commencer par les modeles a temps discret, ne serait-ce que pour
habituer tout de suite les lecteurs a travailler avec les équations de récurrence, car ce sont
elles qui seront programmeées in fine pour réaliser le contrdle. Cependant, pour garder le lien
avec les équations différentielles qui sont bien connues des étudiants, tout en simplifiant les
démonstrations, les deux études seront menées en paralléle.

2.2 LES MODELES LTI

Les systemes dont le fonctionnement est décrit par des équations différentielles ou des équa-
tions de récurrence linéaires a coefficients constants sont appelés communément « systémes
LTI » pour systemes Linéaires a Temps Invariant ou Linear Time Invariant Systems. Les
notions structurelles fondamentales pour le contréle seront introduites sur ces modéles : la
stabilité, la commandabilité et I’observabilité. Lorsque ces propriétés ne sont pas vérifiées,
la premiére préoccupation de I’automaticien est soit de les obtenir, soit d’évaluer avec quel
niveau de dégradation un contrdle peut encore étre fait.

2.2.1 Forme canonique

Pour de nombreux systemes physiques, I’écriture des équations en utilisant des variables
d’état est naturelle et couramment employée. Lorsqu’on écrit les équations qui représentent le
fonctionnement d’un moteur a courant continu, on écrit I’équation électrique (L, R,i,U K,
sont respectivement I’inductance, la résistance et le courant d’induit, la tension d’alimenta-
tion, le coefficient de force contre-électromotrice et la vitesse de rotation du rotor)

L((di)/(dt)) = U — Ri — ke

et I’équation mécanique (J, f,I'¢ sont respectivement I’inertie des parties tournantes, le
coefficient de frottement visqueux, le couple de charge )

J((dw)/(dt)) = ki — fw — T,

le courant d’induit et la vitesse de rotation sont les deux variables d’état « naturelles » du
moteur.

Nous écrivons les équations différentielles, comme les équations de récurrence, sous
la forme de plusieurs équations du premier ordre couplées entre elles. Pour ces systémes,
I’espace d’état est R", nous supposerons qu’il y a p sorties et m entrées. Les variables d’état,
de sorties et d’entrées sont regroupées respectivement dans le vecteur d’état x, le vecteur de
sorties y et le vecteur d’entrées u. Les relations sont linéaires et peuvent donc s’écrire sous
forme matricielle.
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Définition 2.1 (Forme canonique LTI) X € R", y ¢ RP, u € R™
Cas continu : L’équation d’état d’un systéme LTI sous forme canonique s’écrit (2.1a) et
(2.1b) :
X = AXx + Bu (2.1a)
y=Cx+Du (2.1b)
Cas discret : Dans le cas discret on utilisera les mémes notations : matrices A, B,C, D . La
forme canonique est (2.2a) et (2.2b) :

Xk+1 = AXg + Bug (2.23)
Yk = Cxx + Dug (2.2b)

On rencontrera ces équations chaque fois que le systéme est commandé par un ordinateur :
Xk, Yk, Uk sont les valeurs du vecteur d’état, des sorties et des commandes au k'*™¢ instant
d’échantillonnage.

Dans les deux cas, continu et discret, on parlera du systeme (A, B,C, D) avec x € R",
y € RP,u e R"etou:

A[n x n] est la matrice d’état
B [n x m] est la matrice d’entrée
C [p x n] est la matrice de sortie
D [p x m] est le transfert direct entrée/sortie.
Les équations (2.1) et (2.2) sont représentées par les schémas de la figure 2.1

D D
B+ J' cC + B + Retad C +
A A

Figure 2.1 Schéma standard pour la forme canonique.

2.2.2 Représentations équivalentes

A partir de la représentation d’état précédente (A, B, C, D) il est possible d’obtenir d’autres
formes d’état en effectuant une transformation sur x. Soit P une matrice réguliére (P de
rang n). On construit un nouveau vecteur d’état z par la transformation

z=Px (2.3)

Le vecteur z vérifie I’équation (2.4a) et les sorties y peuvent s’écrire en fonction de z et
de u par I’équation (2.4b).

Z=A1z+Bu (2.4a)

y =Cyz+ Dyu (2.4b)
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Les matrices (A1, B;,Cy, Dq) vérifient les relations (2.5). Il suffit de remplacer x par
P 1z dans (2.1a et 2.1b) pour le démontrer

A, =PAP! (2.5a)
B, =PB (2.5b)
c,=cp! (2.5¢)
D;=D (2.5d)

Définition 2.2 (représentations équivalentes) Deux représentations (A,B,C,D) et
(A1, B1,C1, D;) sont dites équivalentes, s’il existe une matrice P inversible telle que
les équations (2.5) soient vérifiées.

On peut comprendre aisément que les deux ensembles (A, B, C, D) et (A1, B;,Cy, D1)
représentent bien le méme systéeme. En effet la transformation (2.3) peut étre interprétée
comme un changement de base dans I’espace d’état et les matrices A, B et C sont respective-
ment transformées :

e comme la matrice représentant un endomorphisme de R" — R" par le changement de
base P1.

e comme la matrice représentant un endomorphisme de R™ — R" avec un changement
de base dans I’espace de R".

e comme la matrice représentant un endomorphisme de R" — RRP avec un changement
de base dans I’espace de R".

On pourra donc considérer ces matrices comme les matrices représentant ces trois endo-
morphismes. Ces endomorphismes sont les éléments invariants du systéme, indépendants
des bases choisies dans les différents espaces vectoriels. Cette remarque sera utile pour les
formes canoniques et pour étudier les réalisations minimales.

2.2.3 La fonction de transition d’état

Pour les systémes LTI, on sait calculer explicitement la fonction de transition d’état. On
I’obtient en intégrant I’équation différentielle ou I’équation de récurrence.

a) Cas continu

La solution générale de I’équation
X = Ax + Bu (2.6)

est donnée par la théorie des équations différentielles :

t

X(t) = exp.(A(t — to))x(to) +/ exp.(A(t —s))Bu(s)ds 2.7)

to
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Définition 2.3 (matrice de transition) L’opérateur exp(At) est souvent appelé matrice de
transition du systéme linéaire.

Rappelons que
A2 ANt
eXp(At) — I + At + T + ... +

+... (2.8)

Pour calculer exp(At) explicitement on diagonalise A. Soit A = P~*AP ou P est la
matrice des vecteurs propres, alors :

exp(At) = Pexp(At)P 1 (2.9)
et 0 0
etexp(At)=| 0 e* 0 | oules A; sont les valeurs propres de A.
0 0 et

Cette méthode n’est possible que lorsque A est diagonalisable (voir chapitre 19, Calcul de
exp(At)).

b) Cas discret

La solution de I’équation
Xk+1 = AXg + Bug (210)
est immédiate -
Xe = Afxo+ > AT'Bu_; (2.11)
i=1
Les quantités exp .(A(t —to))x(to) et A¥xq s’appellent les régimes libres. C’est Iévolution
du systéme sur ses conditions initiales. _
Les quantités ftto exp .(A(t — s))Bu(s)ds et Z:j A=1Bu,_; sont les régimes forcés par
les entrées.

¢) Passage continu—discret

Lorsqu’un systeme continu (2.6) est commandé au moyen d’un ordinateur, I’algorithme de
commande est activé périodiquement avec une période T : et la commande u est maintenue
constante entre deux rafraichissements ; on a donc

u(t) = u(kT) = ux t € [KT, (k+1)T[ (2.12)

il suffit d’utiliser la solution de I’équation différentielle (2.7) avec ty = kT ett = (k + )T
pour obtenir le résultat :
(k+1)T
X((k+21)T) =exp(A((k + 1)T — KT))x(kT) + / exp(A((k + 1)T — s))Buyds
KT

T
= exp(AT)x(kT) + (/ exp [A(T — s)] Bds)uk
0
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ou
T
Xk+1 = eXP(AT )xk +/ exp [A(T —s)] Bukds = Axk + Bug (2.13)
0

2.2.4 La stabilité
Définition 2.4 (point d’équilibre) Soit le systtme x = f(x), on dit que X, est un point

d’équilibre si f(xe) = 0. Soit le systeme xx+1 = f(Xx), on dit que X, est un point d’équilibre
Si Xe = f(Xe).

Il est évident qu’au point d’équilibre, comme la dérivée est nulle, le systeme ne bouge pas.
Une trajectoire ayant comme origine un point d’équilibre est réduite a ce point.

On sait parfaitement que cette propriété peut étre physiquement complétement illusoire :
une pyramide en équilibre sur la pointe a peu de chances d’y rester longtemps. La vraie
question est de savoir si :

o le systéme a tendance a rester a proximité du point d’équilibre.

e & se diriger vers lui.

e & s’en éloigner.

Ces notions s’appellent respectivement :

o stabilité;

o stabilité asymptotique (globale si la condition initiale n’importe pas) ;

e instabilité.

Elles sont illustrées par les schémas de la figure 2.2

stable asymptotiquement globalement instable
stable asymptotiquement
stable

Figure 2.2 Différents types d'équilibre.

En I’absence d’entrée, I’état d’équilibre pour les systémes LTI continu et discret est I’état
nul (x = 0).

Exemple 2.1 (mélangeur)

- H N ) .
On a I’équilibre lorsque ddt = Oclj(f = 0 D’ou les deux équations 1.1 et 1.2 :

Dig+ Dy — Dg = 0et CiDyg+CyDyg — CogDg = O avec V1 : Dy = k\/WO ou
V2 : Dy = donnée constante.

Dans la suite nous utiliserons les valeurs numériques suivantes pour développer les
calculs: S =1,C; =50,C, = 10, Hy = 1,Cy = 30,k = 0,001.
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Le point d’équilibre est obtenu :

V1 : en résolvant les équations précédentes Dy = 0,01 D1g = D,o = 0, 005.

V2 : en donnant la valeur de la constante Dg. Nous choisirons la valeur trouvée pour
I’équilibre dans le mode 1 soit Dy = 0, 01.

On trouve alors le méme point d’équilibre : Dyg = D,y = 0,005

Stabilité et énergie sont liées. L’état d’équilibre d’un systeme, correspond a un état ot son
énergie est minimale. Par exemple pour un systéme mécanique, I’équilibre est atteint quand
les énergies cinétique et potentielle sont minimales : c’est a dire : a I’arrét et au point le plus
bas.

Nous étudierons les modeles obtenus par linéarisation autour du point d’équilibre.

On écrit alors les écarts entre les variables et leur position d’équilibre : X = X + x pour
obtenir le modele linéarisé autour du point de fonctionnement.

> V1
dh
- —di+d, —
Sdt d;+d,—d
dc dh
S (HOE +C0E> = Cq1d; +Cyody — Cod — DgcC

En réécrivant ces équations sous la forme canonique :

dh_ D0h+d1+d2

dt — 2vp S
dc . Do C,—Cp C, —Cq
a = _V—OC + VO d]_ + VO d2
Vo .
En posant 7 = - on a le systéme :
0
0 L !
ain —| 2r n S S d;
a |:C:| B OT _} |:C:| * Ci1—Cp C,—0Co d, (214)
T VO Vo
>
" dh _di+dr—d 215
dt S .
dc o Do C,—Cy C, —Co
it v T Ty (2.16)

Sous la forme matricielle on obtient ;

1 1

d [h 0 O h q _l
E[C]_lo —1] [C}-F C1§Co CzECo [di]"'[ OS]d (2.17)

T Vo Vo
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Application numérique

7 = 100s
C1—Co=20
Co—Co=-20
> V1 ; _
h] [-0005 0 ][h], 2 17[d
dt [c} B [ 0 —0.01] {C} * {20 __20] [ 0 ] (2.18)
>V2 ; _
h] [0 0 ]fph 1 1[4 1
dt M - [0 —0-01} M " |20 _20} [dz ] * [ 0 } d (2.19)

Définition 2.5 (systéme LTI stable) On dira qu’un systéme LTI est (asymptotiquement)
stable si I’état x = 0 est (asymptotiquement) stable.

Comme on dispose de la solution explicite :

X(t) = exp(At)xo (2.20a)
X = A% (2.20b)

les résultats sont immédiats.

Proposition 2.6 (stabilité) Un systéme LTI continu est stable si les valeurs propres de la
matrice d’état sont a parties réelles négatives. Un systéme LTI discret est stable si les valeurs
propres de la matrice d’état ont un module inférieur ou égal a un.

Proposition 2.7 (stabilité asymptotique) Un systéme LTI continu est asymptotiquement
stable si les valeurs propres de la matrice d’état sont a parties réelles strictement négatives.
Un systéme LTI discret est asymptotiquement stable si les valeurs propres de la matrice
d’état ont un module strictement inférieur a un.

Proposition 2.8 Un systéme LTI asymptotiquement stable est globalement asymptotiquement
stable.

| Démonstration. Ces résultats découlent directement des équations (2.20)

Exemple 2.2
V1 L’équilibre est asymptotiquement stable puisque les valeurs propres de la matrice

d’état (—— et ——) (2.14) sont des nombres négatifs.

V2 L’équi Tbre est seulement stable puisqu’une valeur propre vaut zéro (2.17).
L’explication physique est simple. Dans cette modélisation le débit de fuite est consi-
déré comme une perturbation, donc indépendant de la hauteur de liquide dans la cuve.
Si le débit d’entrée est égal a ce débit de fuite, toute hauteur est un point d’équilibre.

Remarque : Il est important de remarquer que les matrices d’état sont différentes.
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Il est toujours hasardeux de modéliser un comportement inconnu (ici par exemple, on peut
imaginer qu’on ignore la loi qui lie le débit a la hauteur) par une perturbation indépendante.
La dynamique interne du systéme, reflétée par la matrice d’état, est modifiée puisque le débit
de fuite n’est plus lié a la hauteur.

La matrice C dépendra des capteurs utilisés.

2.2.5 La commandabilité

Cette propriété donne la réponse au probléme suivant : étant donnés un état initial xo imposé
et un état final x+ désiré, existe-t-il au moins une commande qui amene le systéme d’un état
vers I’autre ? Par exemple, est-il possible d’amener un avion parallelement a I’axe de la piste
d’atterrissage alors qu’il vole a une altitude de 3000 m, avec une vitesse de 600 km/h ?

On comprend I’intérét de pouvoir répondre a cette question avant de lancer une étude pour
rechercher la meilleure commande. Mais il y a plus : si un systéme posséde cette propriété,
on est assuré de pouvoir au moins le stabiliser avec une structure de commande simple.
A contrario, si la commandabilité n’est pas vérifiée sur le systéme & commander, on peut
méme étre incapable d’arriver a stabiliser le systeme ; et ceci quelle que soit I’habileté de
I’automaticien ! C’est la structure du systéme qui est a modifier avant de pouvoir entreprendre
son contréle.

Remarquons que cette propriété est trés exigeante : avec les entrées, il ne s’agit pas
uniquement de faire évoluer les sorties, mais d’amener toutes les composantes du vecteur
d’état a des valeurs prédéfinies. Est-il évident, par exemple (figure 2.3), que I’on puisse
imposer une valeur arbitraire du courant i et de la tension Vs dans le circuit électrique
lorsqu’on dispose de la seule source de tension V. comme commande ?

Figure 2.3 Circuit passif (R, L, C).

Il n’est pas facile de répondre a cette question de maniére intuitive. Heureusement, la
vérification de cette propriété est immédiate dans le cas mono-entrée, elle ne présente de
difficulté que dans le cas multivariable.

Pour désigner indifféremment les systemes continus (2.6) et discrets (2.10), on utilisera
I’appellation « systeme (A, B) ».





