MÉCANIQUE • QUANTIQUE •

TOME I Nouvelle édition

CLAUDE COHEN-TANNOUDJI BERNARD DIU FRANCK LALOË

MÉCANIQUE | QUANTIQUE I

CLAUDE COHEN-TANNOUDJI BERNARD DIU FRANCK LALOË

Cet ouvrage, issu de nombreuses années d'enseignements universitaires à divers niveaux, a été conçu afin de faciliter le premier contact avec la physique quantique et d'aider ensuite le lecteur à progresser continûment dans la compréhension de cette physique. Les deux premiers tomes, publiés il y a plus de 40 ans, sont devenus des classiques dans le monde entier, traduits dans de multiples langues. Ils se placent toutefois à un niveau intermédiaire et ont été complétés par un troisième tome d'un niveau plus avancé. L'ensemble est systématiquement fondé sur une approche progressive des problèmes, où aucune difficulté n'est passée sous silence et où chaque aspect du problème est discuté (en partant souvent d'un rappel classique).

Cette volonté d'aller au fond des choses se concrétise dans la structure même de l'ouvrage, faite de deux textes distincts mais imbriqués : les « chapitres » et les « compléments ». Les chapitres présentent les idées générales et les notions de base. Chacun d'entre eux est suivi de plusieurs compléments, en nombre variable, qui illustrent les méthodes et concepts qui viennent d'être introduits ; les compléments sont des éléments indépendants, dont le but est de proposer un large éventail d'applications et prolongements intéressants. Pour faciliter l'orientation du lecteur et lui permettre d'organiser ses lectures successives, un guide de lecture des compléments est proposé à la fin de chaque chapitre.

Le tome I fournit une introduction générale, suivie d'un chapitre détaillé qui décrit les outils mathématiques de base de la mécanique quantique. L'expérience d'enseignement des auteurs a montré que cette présentation est à terme la plus efficace. Les postulats sont ensuite clairement énoncés à partir du troisième chapitre avec de nombreuses applications en compléments. Ensuite sont décrites quelques grandes applications de la mécanique quantique, par exemple le spin et les systèmes à deux niveaux, ou encore l'oscillateur harmonique qui donne lieu à de très nombreuses applications (vibration des molécules, phonons, etc.) dont bon nombre font l'objet d'un complément spécifique.

Claude Cohen-Tannoudji a été chercheur CNRS, puis professeur successivement à l'Université de Paris et au Collège de France, donnant des cours dont l'influence scientifique a été considérable. Il a été lauréat du Prix Nobel en 1997, avec Steve Chu et Williams Phillips, pour ses nombreuses contributions à la recherche, en particulier dans le domaine du refroidissement et du piégeage d'atomes par des faisceaux laser.

Bernard Diu a été professeur à l'Université de Paris et y a enseigné divers domaines de la physique, en particulier la mécanique quantique et la physique statistique, sur laquelle il a écrit un ouvrage de référence avec trois co-auteurs. Il a toujours montré un intérêt soutenu pour l'enseignement et la diffusion des sciences. Son domaine de recherche principal est la physique des particules.

Franck Laloë a été maître-assistant attaché aux cours de mécanique quantique, puis chercheur CNRS au sein du Laboratoire Kastler Brossel. Ses travaux de recherches ont porté sur divers effets liés aux statistiques quantiques, l'orientation nucléaire de l'hélium trois par pompage optique, les ondes de spin dans les gaz à basse température, et divers aspects de la mécanique quantique fondamentale.

Série Physique dirigée par Michèle LEDUC et Michel LE BELLAC

SAVOIRS ACTUELS

Collection dirigée par Michèle LEDUC

CNRS ÉDITIONS

www.cnrseditions.fr

Création graphique : Béatrice Couëdel

64 €

ISBN EDP Sciences 978-2-7598-2287-4
ISBN CNRS ÉDITIONS 978-2-271-12498-2

Ces ouvrages, écrits par des chercheurs, reflètent des enseignements dispensés dans le cadre de la formation à la recherche. Ils s'adressent donc aux étudiants avancés, aux chercheurs désireux de perfectionner leurs connaissances ainsi qu'à tout lecteur passionné par la science contemporaine.

Claude Cohen-Tannoudji, Bernard Diu et Franck Laloë

Mécanique quantique

Tome I

Nouvelle édition

Collection dirigée par Michèle Leduc et Michel Le Bellac

S = AVOIRS ACTUELSEDP Sciences/CNRS ÉDITIONS

Dans la même collection:

Analyse dans les espaces métriques Hervé Pajot et Emmanuel Russ

Comprenons-nous vraiment la mécanique quantique ? 2^e édition Franck Laloë

Mécanique quantique - Tomes II et III Claude Cohen-Tannoudji, Bernard Diu et Franck Laloë

Cohomologie galoisienne David Harari

Optique non linéaire François Hache

Chimie verte Jacques Augé et Marie-Christine Scherrmann

> Ouvrage publié grâce au mécénat du Centre National de la Recherche Scientifique, de Paris-Sciences-et-Lettres et du Collège de France.

Ouvrage publié avec le soutien du laboratoire Kastler-Brossel. Imprimé en France

© 2018, EDP Sciences, 17 avenue du Hoggar, BP 112, Parc d'activités de Courtabœuf, 91944 Les Ulis Cedex A

et

CNRS Éditions, 15, rue Malebranche, 75005 Paris.

Tous droits de traduction, d'adaptation et de reproduction par tous procédés réservés pour tous pays. Toute reproduction ou représentation intégrale ou partielle, par quelque procédé que ce soit, des pages publiées dans le présent ouvrage, faite sans l'autorisation de l'éditeur est illicite et constitue une contrefaçon. Seules sont autorisées, d'une part, les reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective, et d'autre part, les courtes citations justifiées par le caractère scientifique ou d'information de l'œuvre dans laquelle elles sont incorporées (art. L. 122-4, L. 122-5 et L. 335-2 du Code de la propriété intellectuelle). Des photocopies payantes peuvent être réalisées avec l'accord de l'éditeur. S'adresser au : Centre français d'exploitation du droit de copie, 3, rue Hautefeuille, 75006 Paris. Tél. : 01 43 26 95 35.

EDP Sciences, ISBN (papier): 978-2-7598-2287-4, ISBN (ebook): 978-2-7598-2288-1 CNRS Éditions, ISBN (papier): 978-2-271-12498-2, ISBN (ebook): 978-2-271-12500-2

Avertisssement important: "mode d'emploi"

L'exposé qui va suivre est composé de deux parties distinctes, bien qu'imbriquées : les chapitres et les compléments.

- Les *chapitres* contiennent les notions de base : à quelques développements et quelques variations près, leur niveau correspond à celui d'un cours en Licence 3 pour le premier tome, Master 1 pour le second, et Master 2 pour le troisième. Ces chapitres, au nombre de 21 en tout, *forment un tout*, qui peut être étudié indépendamment des compléments.
- Les compléments suivent chacun des chapitres ; ils sont repérés par une lettre à laquelle, en indice, est adjoint le numéro du chapitre auquel ils sont attachés (par exemple, les compléments qui suivent le Chapitre V sont notés, dans l'ordre : A_V , B_V , C_V , etc.), et peuvent être immédiatement distingués par un signe figurant en haut des pages correspondantes. A la fin de chaque chapitre figure un guide de lecture et une liste de ses compléments, dont le nombre est variable (de 2 à 14).

Les compléments sont de *types divers* : certains sont par exemple destinés à faciliter l'assimilation du chapitre auquel ils sont attachés, ou à préciser certains points ; d'autres peuvent également indiquer des applications physiques concrètes, ou encore ouvrir des perspectives sur différents domaines de la physique ; l'un de ces compléments (généralement le dernier) regroupe des exercices.

Les compléments sont de *niveaux variés* : tous peuvent être compris à partir des chapitres qui les précèdent, mais certains en sont des applications ou des prolongements très simples, alors que d'autres sont plus difficiles (quelques uns peuvent même se situer au niveau du Master 2 ou s'intéresser à des sujets proches de la recherche).

En aucun cas il n'est conseillé d'étudier l'ensemble des compléments d'un chapitre dans l'ordre où ils se présentent. Suivant ses préoccupations et ses intérêts, le lecteur en choisira un petit nombre (par exemple 2 ou 3), plus quelques exercices; les autres compléments pourront être réservés pour une lecture ultérieure. Il pourra s'appuyer pour cela sur le guide de lecture des compléments qui figure à la fin de chaque chapitre.

Signalons engin que, dans le texte des chapitres et des compléments, certains passages pouvant être sautés en première lecture sont imprimés en petits caractères.

Avant-propos

La mécanique quantique est une branche de la physique dont l'importance n'a cessé de s'accroître au cours des dernières décennies. Elle est bien sûr essentielle pour comprendre la structure et la dynamique des objets microscopiques comme les atomes, les molécules, ainsi que leurs interactions avec le rayonnement électromagnétique. Mais elle est aussi à la base du fonctionnement de nombreux systèmes nouveaux comme les sources laser (communications, médecine, usinage, etc.), les horloges atomiques (essentielles, en particulier, pour le GPS), les transistors (et donc les communications, l'informatique), l'imagerie par résonance magnétique, la production d'énergie (capteurs solaires, nucléaire), etc., donc des applications pratiques innombrables. Elle permet également d'expliquer des phénomènes surprenants comme la superfluidité ou la supraconductivité. Un grand intérêt est actuellement porté aux états quantiques intriqués, dont les propriétés de non-localité et non-séparabilité sont peu intuitives, et permettent d'envisager des applications remarquables dans le domaine de l'information quantique. Notre civilisation devient ainsi de plus en plus imprégnée par les applications technologiques qui découlent des concepts quantiques. Il est par suite clair qu'une attention particulière doit être portée à l'enseignement de la mécanique quantique. L'objet de ces trois tomes est de concourir à cet objectif.

Un premier contact avec la mécanique quantique peut cependant être très déroutant. Le présent ouvrage, issu de plusieurs enseignements auprès des étudiants, a été conçu dans le but de faciliter une approche initiale, et d'aider ensuite le lecteur à progresser continûment vers un niveau avancé de mécanique quantique. Les deux premiers tomes, publiés il y a plus de 40 ans, ont été utilisés dans le monde entier et traduits dans de multiples langues. Ils restaient toutefois à un niveau intermédiaire; l'ouvrage est maintenant complété par un troisième tome qui permet au lecteur d'aller plus loin. L'ensemble est systématiquement fondé sur une approche progressive des problèmes, où aucune difficulté n'est passée sous silence, et où chaque aspect des diverses questions est discuté en détail (en partant souvent d'un rappel classique).

Cette volonté d'aller au fond des choses « sans tricher ni prendre de raccourci» se concrétise dans la structure même de l'ouvrage, construite à l'aide de deux textes distincts mais imbriqués : les *chapitres* et les *compléments*. Les chapitres se suivent pour présenter les idées générales et les notions de base. Chaque chapitre est suivi de plusieurs compléments, en nombre variable, qui illustrent les méthodes et concepts qui viennent d'être introduits. Les compléments sont indépendants les uns des autres, et leur but est de proposer un large éventail d'applications diverses et prolongements intéressants. Pour faciliter l'orientation du lecteur et lui permettre d'organiser ses lectures successives, un guide de lecture comprenant une liste de commentaires des compléments un par un est proposée à la fin de chaque chapitre.

Le tome I présente une introduction générale du sujet, suivie d'un chapitre détaillé qui décrit les outils mathématiques de base de la mécanique quantique. Ce chapitre peut paraître un peu long et dense, mais l'expérience d'enseignement des auteurs a montré que cette présentation est à terme la plus efficace. Les postulats sont clairement énoncés à partir du troisième chapitre, avec de nombreuses illustrations en compléments. Ensuite sont décrites quelques grandes applications de la

mécanique quantique, par exemple l'oscillateur harmonique, qui donne lieu à de très nombreuses applications (vibration des molécules, phonons, etc.), dont bon nombre font l'objet d'un complément spécifique.

Le tome II poursuit dans cette voie, en élargissant sa portée, et à un niveau un peu plus élevé. Il aborde la théorie des collisions, le spin, la composition des moments cinétiques et les calculs des perturbations indépendantes ou dépendantes du temps. Il fait une première incursion dans l'étude des particules identiques. Dans ce tome, comme dans le précédent, toute notion théorique est immédiatement illustrée par des applications diverses présentées dans des compléments. Comme le tome I, il a bénéficié de quelques corrections récentes, mais il a également été augmenté : le chapitre XIII comprend maintenant deux §§ D et E qui traitent des perturbations aléatoires, et un complément entier sur la relaxation a été ajouté à ce chapitre.

Enfin le tome III vient maintenant compléter les deux premiers, en se situant à un niveau plus élaboré. Il se base sur l'usage du formalisme des opérateurs de création et d'annihilation (deuxième quantification), d'utilisation courante en théorie quantique des champs. Dans une première partie, on étudie les systèmes de particules identiques, fermions et bosons. Les propriétés des gaz parfaits en équilibre thermique sont exposées. Pour les fermions, la méthode de Hartree-Fock est présentée en détail; elle est à la base d'un nombre considérable d'études en chimie, physique atomique ou du solide, etc. Pour les bosons, l'équation de Gross-Pitaevskii et la théorie de Bogolubov sont discutées. Une présentation originale qui regroupe les effets d'appariement dans les fermions et les bosons permet d'obtenir la théorie BCS (Bardeen-Cooper-Schrieffer) et de Bogolubov dans un cadre unifié. Une seconde partie du tome III est consacrée à l'électrodynamique quantique, son introduction générale, l'étude des interactions entre atomes et photons, et diverses applications (émission spontanée, transitions multi-photoniques, pompage optique, etc.). La méthode de l'atome habillé est présentée et illustrée dans des cas concrets. Un dernier chapitre discute la notion d'intrication quantique et certains aspects fondamentaux de la mécanique quantique, en particulier les inégalités de Bell et leur violation.

Mentionnons enfin que nous n'avons abordé, ni la discussion des implications philosophiques de la mécanique quantique, ni celle des diverses interprétations de cette théorie, malgré le très grand intérêt qui s'attache à ces sujets. Nous nous sommes en fait limités à présenter que l'on appelle souvent "le point de vue orthodoxe", et seul le Chapitre XXI s'approche un peu de certaines questions touchant les fondements de la mécanique quantique (sa non-localité, etc.). Nous avons fait ce choix car il nous semble que l'on peut s'intésser aux questions relatives aux fondements de façon plus efficace une fois que l'on a acquis au préalable une bonne aisance dans le maniement pratique de la mécanique quantique, ainsi que de ses applications si nombreuses. Ces sujets sont abordés dans l'ouvrage Comprenons-nous vraiment la Mécanique Quantique ? (F. Laloë, EDP Sciences, 2017); voir également la section 5 de la bibliographie des Tomes I et II.

Remerciements:

Tomes I et II : l'enseignement qui est à l'origine de cet ouvrage résulte d'un travail d'équipe qui s'est poursuivi pendant plusieurs années. Nous tenons à remercier ici tous les membres des diverses équipes dont nous avons fait partie, et tout particulièrement Jacques Dupont-Roc et Serge Haroche, pour leur collaboration amicale, les discussions fructueuses que nous avons eues ensemble lors de nos réunions hebdomadaires, les idées de problèmes et d'exercices qu'ils nous ont suggérées. Sans leur enthousiasme et leur aide précieuse, nous n'aurions jamais pu entreprendre et mener à bien la rédaction de cet ouvrage. Nous ne saurions également oublier tout ce que nous devons aux physiciens qui nous ont initiés à la recherche, Alfred Kastler et Jean Brossel pour deux d'entre nous, Maurice Lévy pour le troisième. C'est dans l'ambiance de leurs laboratoires que nous avons découvert la beauté et la puissance de la mécanique quantique. Nous n'oublions pas non plus l'importance qu'a eue pour nous l'enseignement de la physique moderne dispensé au C.E.A. par Albert Messiah, Claude Bloch et Anatole Abragam, à une époque où le troisième cycle n'avait pas encore fait son apparition dans l'enseignement supérieur.

Tome III : Nicole et Dan Ostrowsky ont, à l'occasion de leur traduction du texte en anglais, proposé de nombreuses améliorations ou clarifications, et nous leur en sommes très reconnaissants. Nombreux sont en fait les collègues et amis qui ont grandement contribué à la mise au point de cet ouvrage. Cela nous a d'autant plus aidés que chacun, dans son style propre, nous a apporté des remarques et suggestions complémentaires, et toujours utiles. Tous nos remerciements vont donc en particulier à :

Pierre-François Cohadon Jean Dalibard Sébastien Gleyzes Markus Holzmann Thibaut Jacqmin Philippe Jacquier Amaury Mouchet Jean-Michel Raimond Félix Werner

De plus, Marco Picco et Pierre Cladé nous ont grandement aidés à maîtriser certains aspects délicats de la typographie Latex, et à vectoriser des figures. Roger Balian, Edouard Brézin et William Mullin nous ont fait bénéficier d'utiles conseils et suggestions. Enfin, pour un certain nombre de figures, nous remercions vivement pour leur aide Geneviève Tastevin, Pierre-François Cohadon et Samuel Deléglise.

Tome I

Ι	ONDES ET PARTICULES. INTRODUCTION AUX IDÉES FON-	
	DAMENTALES DE LA MÉCANIQUE QUANTIQUE	1
A	Ondes électromagnétiques et photons	3
В	Corpuscules matériels et ondes de matière	10
С	Description quantique d'une particule. Paquets d'ondes	14
D	Particule dans un potentiel scalaire indépendant du temps	24
GU	JIDE DE LECTURE DES COMPLÉMENTS	35
$\mathbf{A_{I}}$	Ordre de grandeur des longueurs d'onde	37
$\mathbf{B_{I}}$	Contraintes imposées par la relation de Heisenberg	41
1	Système macroscopique	41
2	Système microscopique	41
$\mathbf{C_{I}}$	Relation de Heisenberg et paramètres atomiques	43
$\mathbf{D_{I}}$	Une expérience illustrant la relation de Heisenberg	47
$\mathbf{E_{I}}$	Paquet d'ondes à deux dimensions	51
1	Introduction	51
2	Dispersion angulaire et dimensions latérales	51
3	Discussion physique	53
$\mathbf{F_{I}}$	Lien entre les problèmes à une et à trois dimensions	55
1	Paquet d'ondes à trois dimensions	55
2	Justification des modèles à une dimension	58
$\mathbf{G_{I}}$	Paquet d'ondes gaussien	5 9
1	Définition d'un paquet d'ondes gaussien	59
2	Calcul de Δx et Δp ; relation de Heisenberg	61
3	Evolution du paquet d'ondes	61
$ m H_{I}$	Potentiels carrés à une dimension	65
1	Comportement d'une fonction d'onde stationnaire $\varphi(x)$	65
2	Étude de certains cas simples	67
$\mathbf{J_{I}}$	Paquet d'ondes dans une marche de potentiel	77
1	Réflexion totale : $E < V_0$	77
2	Réflexion partielle : $E > V_0$	81
$\mathbf{K_{I}}$	Exercices	85

III	LES OUTILS MATHÉMATIQUES DE LA MÉCANIQUE QUAN	-
]	Γ IQUE	89
Α	Espace des fonctions d'onde d'une particule	90
В	Espace des états. Notations de Dirac	104
С	Représentations dans l'espace des états	118
D	Equation aux valeurs propres. Observables	128
\mathbf{E}	Deux exemples importants de représentations et d'observables	
F	Produit tensoriel d'espaces d'états	150
GUI	DE DE LECTURE DES COMPLÉMENTS	161
$\mathbf{A_{II}}$	Inégalité de Schwarz	163
$\mathbf{B_{II}}$	Rappel de quelques propriétés utiles des opérateurs linéaires	165
1	Trace d'un opérateur	165
2	Algèbre des commutateurs	167
3	Restriction d'un opérateur à un sous-espace	167
4	Fonctions d'opérateurs	168
5	Dérivation d'un opérateur	
C_{II}	Opérateurs unitaires	175
1	Propriétés générales des opérateurs unitaires	
2	Transformation unitaire sur les opérateurs	
3	Opérateur unitaire infinitésimal	
D	Etudo plus détaillée des popuésantations ([p\] et ([p\])	109
D_{II}	Etude plus détaillée des représentations $\{ \mathbf{r}\rangle\}$ et $\{ \mathbf{p}\rangle\}$ Représentation $\{ \mathbf{r}\rangle\}$	183
$\frac{1}{2}$	Représentation $\{ \mathbf{r}\rangle\}$	
$\mathbf{E_{II}}_{\mathbf{L}}$	Quelques propriétés générales de deux observables Q et P don e commutateur est égal à $i\hbar$	189
1	Opérateur $S(\lambda)$: définition, propriétés	
2	Valeurs propres et vecteurs propres de Q	
3		
	Représentation $\{ \mathbf{q}\rangle\}$	
4	Représentation $\{ p\rangle\}$. Symétrie entre les observables P et Q	192
$\mathbf{F_{II}}$	Opérateur parité	195
1	Etude de l'opérateur parité	
2	Opérateurs pairs et impairs	
3	Etats propres d'une observable B_+ paire	
4	Application à un cas particulier important	201
$\mathbf{G_{II}}$	Application des propriétés du produit tensoriel; puits infini	ı
Ċ	deux dimensions	203
1	Définition; états propres	203
2	Etude des niveaux d'énergie	204
$\mathbf{H_{II}}$	Exercices	207

III	LES POSTULATS DE LA MÉCANIQUE QUANTIQUE	215
A	Introduction	215
В	Enoncé des postulats	217
С	Interprétation physique des postulats sur les observables et leur mesure	229
D	Contenu physique de l'équation de Schrödinger	239
Ε	Principe de superposition et prévisions physiques	256
GUI	DE DE LECTURE DES COMPLÉMENTS	271
	Particule dans un puits de potentiel infini : étude physique	275
1	Répartition des valeurs de l'impulsion dans un état stationnaire	275
2	Evolution de la fonction d'onde de la particule	279
3	Perturbation apportée par une mesure de la position	283
$\mathbf{B}_{\mathbf{III}}$		
1	Expression du courant dans des régions où le potentiel est constant	287
2	Application aux problèmes de marches de potentiel	288
3	Courant de probabilité des ondes incidente et évanescente, dans le cas d'une réflexion sur une marche de potentiel à deux dimensions	289
$\mathbf{C_{III}}$	Ecarts quadratiques moyens de deux observables conjuguées	293
1	Relation de Heisenberg pour P et Q	293
2	Paquet d'ondes "minimum"	294
$\mathbf{D_{III}}$		297
1	Calcul des prévisions physiques	297
2	Signification physique d'un état produit tensoriel	
3	Signification physique d'un état qui n'est pas un produit tensoriel	300
$\mathbf{E_{III}}$		303
1	Position du problème	303
2	Notion de mélange statistique d'états	
3	Cas pur. Introduction de l'opérateur densité	305
4 5	Mélange statistique d'états (cas non pur)	308
	Opérateur d'évolution	317
1	Propriétés générales	317
2	Cas des systèmes conservatifs	319
G_{III}	Points de vue de Schrödinger et de Heisenberg	321
	Invariance de jauge	325
1	Position du problème : potentiels scalaire et vecteur associés à un champ	205
2	électromagnétique ; notion de jauge	$\frac{325}{326}$
3	Invariance de jauge en mécanique classique	
9	internation do judgo on moodingdo qualinque	OOL

${ m J_{III}}$	Propagateur de l'équation de Schrödinger	339
1	Introduction. Idée physique	339
2	Existence et propriétés d'un propagateur $K(2,1)$	
3	Formulation lagrangienne de la mécanique quantique	
K	Niveaux instables. Durée de vie	347
1	Introduction	
2	Définition de la durée de vie	
3	Description phénoménologique de l'instabilité d'un niveau	
${f L_{III}}$	Exercices	351
M	Etats liés dans un "puits de potentiel" de forme quelconque	363
1	Quantification de l'énergie des états liés	
2	Valeur minimale de l'énergie du niveau fondamental	
	Etats non liés d'une particule en présence d'un puits ou d'une	
b	arrière de potentiel de forme quelconque	371
1	Matrice de transmission $M(k)$	
2	Coefficients de transmission et de réflexion	
3	Exemple	377
	Propriétés quantiques d'une particule dans une structure	
p	ériodique à une dimension	379
1	Traversée successive de plusieurs barrières de potentiel identiques	380
2 3	Discussion physique : notion de bande d'énergie permise ou interdite Quantification des niveaux d'énergie dans un potentiel de structure pé-	386
	riodique; effet des conditions aux limites	388

IV S	APPLICATION DES POSTULATS À DES CAS SIMPLES PIN 1/2 ET SYSTÈMES À DEUX NIVEAUX	: 397
A	Particule de spin 1/2 : quantification du moment cinétique	
В	Illustration des postulats sur le cas d'un spin $1/2$	
С	Etude générale des systèmes à deux niveaux	416
GUI	DE DE LECTURE DES COMPLÉMENTS	427
$\mathbf{A_{IV}}$	Les matrices de Pauli	429
1	Définition ; valeurs propres et vecteurs propres $\dots \dots \dots \dots$	429
2	Propriétés simples	430
3	Une base commode de l'espace des matrices 2×2	431
$\mathbf{B_{IV}}$	Diagonalisation d'une matrice hermitique 2×2	433
1	$Introduction \dots \dots$	
2	Changement d'origine pour le repérage des valeurs propres $\ \ \ldots \ \ldots \ \ \ldots$	
3	Calcul des valeurs propres et vecteurs propres	435

C _{IV} 1 2	Spin fictif 1/2 associé à un système à deux niveaux Introduction	
3	Interprétation géométrique	
		445
1 2	Description quantique	
$\mathbf{E_{IV}}$	1 /	453
1	Introduction	
2 3	Matrice densité d'un spin parfaitement polarisé (cas pur)	
4	Spin 1/2 à l'équilibre thermodynamique dans un champ statique	
5	Décomposition de la matrice densité sur les matrices de Pauli	
$\mathbf{F_{IV}}$		459
1	Traitement classique ; référentiel tournant $\dots \dots \dots \dots \dots \dots$	
2	Traitement quantique	462
3	Lien entre le traitement classique et le traitement quantique : évolution de $\langle \mathbf{M} \rangle$	467
4	Equations de Bloch	
G_{IV}	Modèle simple pour la molécule d'ammoniac	473
1	Description du modèle	
2	Fonctions propres et valeurs propres de l'hamiltonien	
3	La molécule d'ammoniac considérée comme un système à deux niveaux	482
	1 8	489
1	Introduction. Notations	489
2 3	Influence d'un couplage faible sur des niveaux d'énergies différentes Influence d'un couplage quelconque sur des niveaux de même énergie	
$ m J_{IV}$	Exercices	495

v i	C'OSCILLATEUR HARMONIQUE À UNE DIMENSION	501
	Introduction	501
В	Valeurs propres de l'hamiltonien	
C D	Etats propres de l'hamiltonien	
	Discussion physique	
GUI	DE DE LECTURE DES COMPLÉMENTS	529
$\mathbf{A_{V}}$	Etude de quelques exemples physiques d'oscillateurs harmonique	
1	Vibration des noyaux d'une molécule diatomique	
2 3	Vibration des noyaux dans un cristal	
4	Atomes muoniques lourds	

C	Etude des états stationnaires en représentation $\{ x\rangle\}$. Polynômes d'Hermite Les polynômes d'Hermite	551 551
1 2	Les fonctions propres de l'hamiltonien de l'oscillateur harmonique	
$\mathbf{c}_{\mathbf{v}}$	Résolution de l'équation aux valeurs propres de l'oscillateur	
	narmonique par la méthode polynomiale	559 559
1 2	Changement de fonction et de variable	
$\mathbf{D_{V}}$	Etude des états stationnaires en représentation $\{ \mathbf{p}\rangle\}$	567
1	Fonctions d'onde dans l'espace des impulsions	567
2	Discussion physique	
$\mathbf{E}_{\mathbf{V}}$	L'oscillateur harmonique isotrope à trois dimensions	573
— v 1	L'opérateur hamiltonien	
2	Séparation des variables en coordonnées cartésiennes	
3	Dégénérescence des niveaux d'énergie	
$\mathbf{F}_{\mathbf{V}}$	Oscillateur harmonique chargé placé dans un champ électrique	;
ι	niforme	579
1	Equation aux valeurs propres de $H'(\mathscr{E})$ en représentation $\{ x\rangle\}$	580
2	Discussion physique	581
3	Utilisation de l'opérateur translation	583
G_{V}	Etats cohérents "quasi classiques" de l'oscillateur harmonique	
1	Recherche des états quasi classiques	588
2	Propriétés des états $ \alpha\rangle$	592
3	Evolution d'un état quasi classique au cours du temps	599
4	Exemple d'application : étude quantique d'un oscillateur macroscopique	001
H_{V}	Modes propres de vibration de deux oscillateurs harmoniques couplés	603
1	Vibrations des deux particules en mécanique classique	
2	Etats de vibration du système en mécanique quantique	
$ m J_{ m V}$	Modes de vibration d'une chaîne linéaire indéfinie d'oscillateur	
-	narmoniques couplés; phonons	615
1	Etude classique	616
2	Etude quantique	626
3	Application à l'étude des vibrations dans un cristal : les phonons	630
$\mathbf{K}_{\mathbf{V}}$	Modes de vibration d'un système physique continu. Application	l
	au rayonnement; photons	635
1	Position du problème	635
2	Modes de vibration d'un système mécanique continu : exemple de la	000
0	corde vibrante	636
3	Modes de vibration du rayonnement : les photons	643

${ m L}_{ m V}$	Oscillateur harmonique à une dimension en équilibre	
t	${\bf r}$ thermodynamique à la température ${\cal T}$	651
1	Energie moyenne	652
2	Discussion physique	654
3	Applications	655
4	Distribution de probabilité de l'observable X	659
$\mathbf{M}_{\mathbf{V}}$	Exercices	667

VI	MOMENTS CINÉTIQUES EN MÉCANIQUE QUANTIQUE	673
A	Introduction : importance du moment cinétique	673
В	Relations de commutation caractéristiques des moments cinétiques	675
С	Théorie générale du moment cinétique	678
D	Application au moment cinétique orbital	691
GUI	DE DE LECTURE DES COMPLÉMENTS	709
$ m A_{VI}$	Les harmoniques sphériques	711
1	Calcul des harmoniques sphériques	711
2	Propriétés des harmoniques sphériques	716
$ m B_{VI}$	Moment cinétique et rotations	723
1	Introduction	723
2	Etude succincte des rotations géométriques $\mathcal R$	724
3	Opérateurs de rotation dans l'espace des états.	700
4	Exemple d'une particule sans spin	
4	Opérateurs de rotation dans l'espace des états d'un système quelconque	
5	Rotation des observables	
6	L'invariance par rotation	740
C_{VI}		745
1	Introduction	
2	Rotateur rigide. Etude classique	
3	Quantification du rotateur rigide	
4	Manifestations expérimentales de la rotation des molécules	752
	Moment cinétique des états stationnaires d'un oscillateur	
	narmonique à deux dimensions	761
1	Introduction	761
2	Classification des états stationnaires au moyen des nombres quantiques n_x et n_y	765
3	Classification des états stationnaires en fonction de leur moment cinétique	
4	Etats quasi classiques	
*	- Domos quast crassiques	

	Particule chargée dans un champ magnétique. Niveaux de Lan-	
-	au	777
1	Rappels classiques	777
2	Propriétés quantiques générales d'une particule dans un champ magnétique	
3	Cas où le champ magnétique est uniforme	785
$\mathbf{F}_{\mathbf{V}\mathbf{I}}$	Exercices	801

VII	PARTICULE DANS UN POTENTIEL CENTRAL. ATOME	!
	D'HYDROGÈNE	809
A	Etats stationnaires d'une particule dans un potentiel central	810
В	Mouvement du centre de masse et mouvement relatif pour un système	
C	de deux particules en interaction	819
С	L'atome d'hydrogène	824
GUI	DE DE LECTURE DES COMPLÉMENTS	839
$\mathbf{A_{VI}}$	Systèmes hydrogénoïdes	841
1	Systèmes hydrogénoïdes comprenant un électron	842
2	Systèmes hydrogénoïdes sans électron	847
B_{VII}	Exemple soluble de potentiel central : l'oscillateur harmonique	,
		851
1	Résolution de l'équation radiale	852
2	Niveaux d'énergie et fonctions d'onde station naires	854
C_{VII}	Courants de probabilité associés aux états stationnaires de l'aton	1e
	'hydrogène	861
1	Expression générale du courant de probabilité	861
2	Application aux états stationnaires de l'atome d'hydrogène $\ \ldots \ \ldots \ \ldots$	862
D_{VI}	Atome d'hydrogène plongé dans un champ magnétique uniforme	
		865
1	Hamiltonien du problème. Terme paramagnétique et terme diamagnétique	866
2	Effet Zeeman	872
Ezzu	Etude de quelques orbitales atomiques. Orbitales hybrides	879
1	Introduction	879
2	Orbitales atomiques associées à des fonctions d'onde réelles	880
3	Hybridation sp	886
4	Hybridation sp^2	888
5	Hybridation sp^3	892
Fyrr	Niveaux de vibration-rotation des molécules diatomiques	895
1	Introduction	895
2	Résolution approchée de l'équation radiale	896
3	Evaluation de quelques corrections	902

G_{VI}	I Exercices	909
1	Particule dans un potentiel à symétrie cylindrique	909
2	Oscillateur harmonique à trois dimensions dans un champ magnétique	
	uniforme	909

IND	DEX	911

Tome II

VIII	THÉORIE ÉLÉMENTAIRE DES COLLISIONS	931
GUIE	DE DE LECTURE DES COMPLÉMENTS	965
$ m A_{VII}$ bi	$_{ m I}$ La particule libre : états stationnaires de moment cinétique de défini	ıe 967
$\mathbf{B}_{\mathbf{VIII}}$	Description phénoménologique des collisions avec absorptio	n979
$\mathbf{C_{VIII}}$	Exemples simples d'application de la théorie de la diffusion	985

IX	LE SPIN DE L'ÉLECTRON	993
GUII	DE DE LECTURE DES COMPLÉMENTS	1007
A_{IX}	Opérateurs de rotation pour une particule de spin $1/2$	1009
$\mathbf{B_{IX}}$	Exercices	1017

\mathbf{X}	COMPOSITION DES MOMENTS CINÉTIQUES	1023
GUII	DE DE LECTURE DES COMPLÉMENTS	1049
$\mathbf{A}_{\mathbf{X}}$	Exemples de composition de moments cinétiques	1051
$\mathbf{B}_{\mathbf{X}}$	Coefficients de Clebsch-Gordan	1059
$\mathbf{C}_{\mathbf{X}}$	Composition des harmoniques sphériques	1067
$\mathbf{D}_{\mathbf{X}}$	Opérateurs vectoriels : Théorème de Wigner-Eckart	1073
$\mathbf{E}_{\mathbf{X}}$	Moments multipolaires électriques	1085
	Deux moments cinétiques \mathbf{J}_1 et \mathbf{J}_2 couplés par une interaction $\mathbf{J}_1\cdot\mathbf{J}_2$	n 1099
$\mathbf{G}_{\mathbf{X}}$	Exercices	1113

ΧI	THÉORIE DES PERTURBATIONS STATIONNAIRES	1121
GUII	DE DE LECTURE DES COMPLÉMENTS	1135
	Oscillateur harmonique à une dimension soumis à un potentierturbateur en x , x^2 , x^3	el 1137

spin $1/2$	1147
C _{XI} Forces de Van der Waals	1157
$\mathbf{D_{XI}}$ Effet de volume : influence de l'extension spatiale du noyau s les niveaux atomiques	sur 1169
$\mathbf{E}_{\mathbf{X}\mathbf{I}}$ La méthode des variations	1177
$\mathbf{F_{XI}}\;\;$ Bandes d'énergie des électrons dans les solides : modèle simple	1185
G_{XI} Exemple simple de liaison chimique : l'ion H_2^+	1199
H _{XI} Exercices	1231

XII APPLICATION DE LA THÉORIE DES PERTURBATION STRUCTURE FINE ET HYPERFINE DE L'ATOME D'HYDR GÊNE	
GUIDE DE LECTURE DES COMPLÉMENTS	1277
$\mathbf{A}_{\mathbf{XII}}$ Hamiltonien hyperfin magnétique	1279
$\mathbf{B_{XII}}$ Calcul des valeurs moyennes de l'hamiltonien de structure fi dans les états $1s,2s$ et $2p$	ine 1289
$\mathbf{C}_{\mathbf{XII}}$ Structure hyperfine et effet Zeeman du muonium et du posit nium	ro- 1293
$\mathbf{D}_{\mathbf{XII}}$ Influence du spin électronique sur l'effet Zeeman de la raie résonance de l'hydrogène	de 1301
$\mathbf{E}_{\mathbf{XII}}$ Effet Stark de l'atome d'hydrogène	1311

XIII MÉTHODES D'APPROXIMATION POUR LES PROBLÈ DÉPENDANT DU TEMPS	MES 1315
GUIDE DE LECTURE DES COMPLÉMENTS	1349
${\bf A_{XIII}}$ Interaction d'un atome avec une onde électromagnétique	1351
${\bf B_{XIII}}$ Réponses linéaire et non linéaire d'un système à deux nivez soumis a une perturbation sinusoïdale	ux 1369
${\rm C_{XIII}}$ Oscillations d'un système entre deux états discrets sous l'en d'une perturbation sinusoïdale résonnante	fet 1387

${ m D_{XIII}}$ fina	Désintégration d'un état discret couplé à un continuum d'éta	
ппа	IS	1391
$\mathbf{E}_{\mathbf{XIII}}$	Perturbation aléatoire dépendant du temps, relaxation	1405
$\mathbf{F}_{\mathbf{XIII}}$	Exercices	1425

XIV	SYSTÈMES DE PARTICULES IDENTIQUES	1435
GUIDE	DE LECTURE DES COMPLÉMENTS	1473
$\mathbf{A}_{\mathbf{XIV}}$	Atomes à plusieurs électrons. Configurations électroniques	1475
	Niveaux d'énergie de l'atome d'Hélium : configurations, term tiplets	1483
${ m C_{XIV}} _{ m solic}$	Propriétés physiques d'un gaz d'électrons. Application au des	ıx 1499
D_{XIV}	Exercices	1515

APPE	NDICES	1525
I S	éries de Fourier et transformation de Fourier	1525
II L	a "fonction" δ de Dirac	1535
III L	agrangien et Hamiltonien en mécanique classique	1547
BIBL	IOGRAPHIE DES TOMES I ET II	1565
INDEX	X	1587

linéaire, tenseur	Terme direct et d'échange 1630, 1651.
électrique $\dots 1233$ (ex.)	1653, 1667, 1670
électrique d'un atome1364	Termes
électrique d'un atome d'hydrogène	spectraux1483, 1486
1312(ex.)	Théorème
électrique d'un électron élastique-	de Bloch
ment lié581	de projection 1079
électrique de $NH_3 \dots 487$	de Ritz1178
linéaire avec perturbation sinusoï-	de Wigner-Eckart $1073, 1093$
dale	1116(ex.), 1265
$magnétique \dots 1234(ex.), 1505$	du viriel 354 (ex.), 1219
Symétrique	optique983
ket, état1444	Théorème de Bell 2253, 2257
observable1445, 1458	Théorème de Wick1831, 1835
Symétrisation (postulat de)1451, 1469	Thermodynamique (équilibre)
Symétrisation des observables 226	gaz d'électrons
Symétriseur1444, 1448	généralités312
Systèmes	oscillateur harmonique651
à deux niveaux 439	$spin 1/2 \dots 456$
à trois niveaux1426(ex.)	Thomas (précession de) 1245
hydrogénoïdes	Thomas-Reiche-Kuhn (règle de somme
v	de)
Т	Tore (écoulement dans un)1689
Tamasic (composante de la transfor-	Torsion (oscillations de) 540
mée de Wigner)2374	Townes (effet Autler-Townes)1426(ex.)
Taux d'abosorption	Trace
Taux de photo-ionisation2159, 2169	d'un opérateur 165
Température d'Einstein	partielle d'un opérateur313
Température d'Emistem 2071	Transformation de Bogolubov1987
Temps de relaxation	Transformation de Bogolubov-Valatin
longitudinale	1869, 1955
transversale	Transformation de Fourier 1525
Tenseur 1422	Transformation de jauge 1996
de susceptibilité1234(ex.),	Transformation des opérateurs 179
1426(ex.)	Transformée de Wigner 2347
interaction tenseur 1148	Transition voir Probabilité, Inter-
Tensoriel (opérateur)	dite, Dipolaire électrique, Di-
1118(ex.)	polaire magnétique, Quadru-
Tensoriel (produit)	polaire électrique
applications203, 445	à un ou plusieurs quanta1323,
définition et propriétés150	1381, 1426(ex.)
état produit tensoriel 299, 315	Transition virtuelle
Terme	Transitions à deux photons2141
d'échange 1464, 1468	Transitions dipolaires électriques 2098
de contact 1248, 1257, 1284	Translation (opérateur de)192, 583, 797
	Transposition
de Darwin	Transposition
reime d appariement 1912	

Transverses (champs) 1997	Vide (fluctuations du)648
Triplet	Vide d'excitations1641
Triplet de fluorescence 2189	Vide de photons
Tritium	Vide de quasi-particules1869
Trou1512	Violations des inégalités de Bell 2259,
Trou d'échange	2313
Trous	Viriel (théorème du) 354 (ex.), 1219
Trous (création et d'annihilation)1640	Virtuelle (transition)2145
Tunnel (effet)30, 72, 369, 480, 544,	Vitesse
1185, 1187	de groupe $24, 39, 57, 62, 619,$
Tunnel (ionisation)2171	1196
,	de phase
\mathbf{U}	généralisée216, 1550
Une particule (opérateur à)1620,	Vitesse critique 1694
1623, 1646, 1784	Volume (effet de) 549, 848, 1169, 1280
Unicité du résultat de mesure 2249	Von Neumann (chaîne de)2249
Unitaire	Von Neumann (entropie statistique)2265
matrice127, 178	Von Neumann (équation de) 310
opérateur175, 318	Von Neumann (mesure idéale) 2245
transformation des opérateurs179	Von Neumann (postulat de réduction)
	2250
V	Vortex dans un superfluide1689
Valence (bande de)1511	•
Valeur moyenne d'une observable 230,	\mathbf{W}
243	Weyl (opérateur de)2350
Valeur(s) propre(s) 12, 26, 128, 154,	Wick (théorème de)1831, 1835
178, 218	Wigner (transformée de) $\dots 2347$
dégénérée(s)129, 205, 219, 263	Wigner-Eckart (théorème) 1073, 1093,
Valeurs moyennes anormales 1861	1116(ex.), 1265
Van der Waals (forces de) 1157	
Variables continues (dans lagrangien)	Y
2021	Young (expérience des fentes d')4
Variables intensives ou extensives 2341	Yukawa (potentiel de)985
Variables normales . 606, 620, 635, 637	
Variables normales du champ 2007	Z
Variations (méthode des). 1177, 1190,	Zeeman (effet) 865, 872, 995, 1262,
1199, 1238(ex.)	1264, 1268, 1272, 1274
Vecteur	du muonium
d'étatvoir Etat	du positronium
propre	Zône de Brillouin618, 1191
Vectoriel	
modèle	
opérateur 738, 1073, 1116(ex.)	
Vibration	
des noyaux dans un cristal 538,	
615, 657	
des noyaux dans une molécule531,	
895	
Vide (état du)	